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13.15 Acknowledgements And Retransmission

Because TCP sends data in variable length segments and because retransmitted
segments can include more data than the original, acknowledgements cannot easily refer
to datagrams or segments. Instead, they refer to a position in the stream using the
stream sequence numbers. The receiver collects data octets from arriving segments and
reconstructs an exact copy of the stream being sent. Because segments travel in IP da-
tagrams, they can be lost or delivered out of order: the receiver uses the sequence
numbers to reorder segments. At any time, the receiver will have reconstructed zero or.
more octets contiguously from the beginning of the stream, but may have additional
pieces of the stream from datagrams that arrived out of order. The receiver always ack-
nowledges the longest contiguous prefix of the stream that has been received correctly.
Each acknowledgement specifies a sequence value one greater than the highest octet po-
sition in the contiguous prefix it received. Thus, the sender receives continuous feed-
back from the receiver as it progresses through the stream. We can summarize this im-
portant idea:

A TCP acknowledgement specifies the sequence number of the next
octet that the receiver expects to receive.

The TCP acknowledgement scheme is called cumulative because it reports how much of
the stream has accumulated. Cumulative acknowledgements have both advantages and
disadvantages. One advantage is that acknowledgements are both easy to generate and
unambiguous. Another advantage is that lost acknowledgements do not necessarily
force retransmission. A major disadvantage is that the sender does not receive informa-
tion about all successful transmissions, but only about a single position in the stream
that has been received.

To understand why lack of information about all successful transmissions makes
cumulative acknowledgements less efficient, think of a window that spans 5000 octets
starting at position /01 in the stream, and suppose the sender has transmitted all data in
the window by sending five segments. Suppose further that the first segment is lost, but
all others arrive intact. As each segment arrives, the receiver sends an acknowledge-
ment, but each acknowledgement specifies octet /01, the next highest contiguous octet
it expects to receive. There is no way for the receiver to tell the sender that most of the
data for the current window has arrived.

When a timeout occurs at the sender’s side, the sender must choose between two
potentially inefficient schemes. It may choose to retransmit one segment or all five seg-
ments. In this case retransmitting all five segments is inefficient. When the first seg-
ment arrives, the receiver will have all the data in the window, and will acknowledge
5101. If the sender follows the accepted standard and retransmits only the first unack-
nowledged segment, it must wait for the acknowledgement before it can decide what
and how much to send. Thus, it reverts to a simple positive acknowledgement protocol
and may lose the advantages of having a large window.
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13.16 Timeout And Retransmission

One of the most important and complex ideas in TCP is embedded in the way it
handles timeout and retransmission. Like other reliable protocols, TCP expects the des-
tination to send acknowledgements whenever it successfully receives new octets from
the data stream. Every time it sends a segment, TCP starts a timer and waits for an
acknowledgement. If the timer expires before data in the segment has been ack-
nowledged, TCP assumes that the segment was lost or corrupted and retransmits it.

To understand why the TCP retransmission algorithm differs from the algorithm
used in many network protocols, we need to remember that TCP is intended for use in
an internet environment. In an internet, a segment traveling between a pair of machines
may traverse a single, low-delay network (e.g., a high-speed LAN), or it may travel
across multiple intermediate networks through multiple routers. Thus, it is impossible
to know a priori how quickly acknowledgements will return to the source. Further-
more, the delay at each router depends on traffic, so the total time required for a seg-
ment to travel to the destination and an acknowledgement to return to the source varies
dramatically from one instant to another. Figure 13.10, which shows measurements of
round trip times across the global Internet for 100 consecutive packets, illustrates the
problem. TCP software must accommodate both the vast differences in the time re-
quired to reach various destinations and the changes in time required to reach a given
destination as traffic load varies.

TCP accommodates varying internet delays by using an adaptive retransmission
algorithm. In essence, TCP monitors the performance of each connection and deduces
reasonable values for timeouts. As the performance of a connection changes, TCP re-
vises its timeout value (i.e., it adapts to the change).

To collect the data needed for an adaptive algorithm, TCP records the time at
which each segment is sent and the time at which an acknowledgement arrives for the
data in that segment. From the two times, TCP computes an elapsed time known as a
sample round trip time or round trip sample. Whenever it obtains a new round trip
sample, TCP adjusts its notion of the average round trip time for the connection. Usu-
ally, TCP software stores the estimated round trip time, RTT, as a weighted average and
uses new round trip samples to change the average slowly. For example, when comput-
ing a new weighted average, one early averaging technique used a constant weighting
factor, o, where 0<a <1, to weight the old average against the latest round trip sample:

RTT = (a*OId_RTT) + ((1-a) * New_Round_Trip_Sample)
Choosing a value for a close to / makes the weighted average immune to changes that

last a short time (e.g., a single segment that encounters long delay). Choosing a value
for o close to 0 makes the weighted average respond to changes in delay very quickly.



Sec. 13.16 Timeout And Retransmission 227

10 s

8s — xx

Time 200X

48

2s xX

T T T T T T T T T ™
10 20 30 40 50 60 70 80 90 100

Datagram Number

Figure 13.10 A plot of Internet round trip times as measured for 100 succes-
sive IP datagrams. Although the Internet now operates with
much lower delay, the delays still vary over time.

When it sends a packet, TCP computes a timeout value as a function of the current
round trip estimate. Early implementations of TCP used a constant weighting factor,
(B> 1), and made the timeout greater than the current round trip estimate:

Timeout=p* RTT

Choosing a value for B can be difficult. On one hand, to detect packet loss quickly, the
timeout value should be close to the current round trip time (i.e., § should be close to
I). Detecting packet loss quickly improves throughput because TCP will not wait an
unnecessarily long time before retransmitting. On the other hand, if B=1, TCP is over-
ly eager — any small delay will cause an unnecessary retransmission, which wastes net-
work bandwidth. The onginal specification recommended setting B=2; more recent
work described below has produced better techniques for adjusting timeout.
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We can summarize the ideas presented so far:

To accommodate the varying delavs encountered in an internet en-
vironment, TCP uses an adaptive retransmission algorithm that moni-
tors delavs on each connection and adjusts its timeout parameter ac-
cordingly.

13.17 Accurate Measurement Of Round Trip Samples

In theory, measuring a round trip sample is trivial — it consists of subtracting the
time at which the segment is sent from the time at which the acknowledgement arrives.
However. complications arise because TCP uses a cumulative acknowledgement scheme
in which an acknowledgement refers to data received, and not to the instance of a
specific datagram that carried the data. Consider a retransmission. TCP forms a seg-
ment, places it in a datagram and sends it, the timer expires, and TCP sends the seg-
ment again in a second datagram. Because both datagrams carry exactly the same data,
the sender has no way of knowing whether an acknowledgement corresponds to the ori-
ginal or retransmitted datagram. This phenomenon has been called acknowledgement
ambiguity. and TCP acknowledgements are said to be ambiguous.

Should TCP assume acknowledgements belong with the earliest (i.e., original)
transmission or the latest (i.e., the most recent retransmission)? Surprisingly, neither as-
sumption works. Associating the acknowledgement with the original transmission can
make the estimated round trip time grow without bound in cases where an internet loses
datagramst. If an acknowledgement arrives after one or more retransmissions, TCP
will measure the round trip sample from the original transmission, and compute a new
RTT using the excessively long sample. Thus, RTT will grow slightly. The next time
TCP sends a segment, the larger RTT will result in slightly longer timeouts, so if an
acknowledgement arrives after one or more retransmissions, the next sample round trip
time will be even larger, and so on.

Associating the acknowledgement with the most recent retransmission can also fail.
Consider what happens when the end-to-end delay suddenly increases. When TCP
sends a segment, it uses the old round trip estimate to compute a timeout, which is now
too small. The segment arrives and an acknowledgement starts back, but the increase in
delay means the timer expires before the acknowledgement arrives, and TCP retransmits
the segment. Shortly after TCP retransmits, the first acknowledgement arrives and is
associated with the retransmission. The round trip sample will be much too small and
will resclt in a slight decrease of the estimated round trip time, RTT. Unfortunately,
lowering the estimated round trip time guarantees that TCP will set the timeout too
small for the next segment. Ultimately, the estimated round trip time can stabilize at a
value, T, such that the correct round trip time is slightly longer than some multiple of 7.
Implementations of TCP that associate acknowledgements with the most recent re-
transmission have been observed in a stable state with RTT slightly less than one-half
of the correct value (i.e., TCP sends each segment exactly twice even though no loss
occurs).

+The estimate can only grow arbitrarily large if every segment is lost at least once.
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13.18 Karn’s Algorithm And Timer Backoff

If the original transmission and the most recent transmission both fail to provide
accurate round trip times. what should TCP do? The accepted answer is simple: TCP
should not update the round trip estimate for retransmitted segments. This idea, known
as Karn's Algorithm, avoids the problem of ambiguous acknowledgements altogether by
only adjusting the estimated round trip for unambiguous acknowledgements (ack-
nowledgements that arrive for segments that have only been transmitted once).

Of course, a simplistic implementation of Karn's algorithm, one that merely ig-
nores times from retransmitted segments, can lead to failure as well. Consider what
happens when TCP sends a segment after a sharp increase in delay. TCP compuies a
timeout using the existing round trip estimate. The timeout will be too small for the
new delay and will force retransmission. If TCP ignores acknowledgements from re-
transmitted segments, it will never update the estimate and the cycle will continue.

To accommodate such failures, Karn's algorithm requires the sender to combine re-
transmission timeouts with a timer backoff strategy. The backotf technique computes
an initial timeout using a formula likethe one shown above. However, if the timer ex-
pires and causes a retransmission, TCP increases the timeout. In fact, each time it must
retransmit a segment, TCP increases the timeout (to keep timeouts from becoming ridi-
culously long, most implementations limit increases to an upper bound that is larger
than the delay along any path in the internet).

Implementations use a variety of techniques to compute backoff. Most choose a
multiplicative factor, ¥, and set the new value to:

new_timeout = y* timeout

Typically, y is 2. (It has been argued that values of y less than 2 lead to instabilities.)
Other implementations use a table of multiplicative factors, allowing arbitrary backoff at
each stept.

Karn's algorithm combines the backoff technique with round trip estimation to
solve the problem of never increasing round trip estimates:

Karn's algorithm: When computing the round trip estimate, ignore
samples that correspond to retransmitted segments, but use a backoff
strategy, and retain the timeout value from a retransmitted packet for
subsequent packets until a valid sample is obtained.

Generally speaking, when an internet misbehaves, Karn’s algorithm separates computa-
tion of the timeout value from the current round trip estimate. It uses the round trip es-
timate to compute an initial timeout value, but then backs off the timeout on each re-
transmission until it can successfully transfer a segment. When it sends subsequent seg-
ments, it retains the timeout value that results from backoff. Finally, when an ack-
nowledgement arrives corresponding to a segment that did not require retransmission,

+Berkeley UNIX is the most notable system that uses a table of factors, but current values in the table are
equivalent to using Y=2.
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TCP recomputes the round trip estimate and resets the timeout accordingly. Experience
shows that Karn’s algorithm works well even in networks with high packet losst.

13.19 Responding To High Variance In Delay

Research into round trip estimation has shown that the computations described
above do not adapt to a wide range of variation in delay. Queueing theory suggests that
the variation in round trip time, G, varies proportional to 1/(1-L), where L is the current
network load, 0<L</. If an internet is running at 50% of capacity, we expect the
round trip delay to vary by a factor of £26, or 4. When the load reaches 80%, we ex-
pect a variation of /0. The original TCP standard specified the technique for estimating
round trip time that we described earlier. Using that technique and limiting B to the
suggested value of 2 means the round trip estimation can adapt to loads of at most 30%.

The 1989 specification for TCP requires implementations to estimate both the aver-
age round trip time and the variance, and to use the estimated variance in place of the
constant 3. As a result, new implementations of TCP can adapt to a wider range of
variation in delay and yield substantially higher throughput. Fortunately, the approxi-
mations require little computation; extremely efficient programs can be derived from the
following simple equations:

DIFF = SAMPLE - Old_RTT
Smoothed_RTT = Old_RTT + &* DIFF
DEV = Old_DEV + p (IDIFF|- Old_DEV')
Timeout = Smoothed_RTT + n* DEV

where DEYV is the estimated mean deviation, & is a fraction between 0 and I that con-
trols how quickly the new sample affects the weighted average, p is a fraction between
0 and 1 that controls how quickly the new sample affects the mean deviation, and 7 is a
factor that controls how much the deviation affects the round trip timeout. To make the
computation efficient, TCP chooses & and p to each be an inverse of a power of 2,
scales the computation by 2" for an appropriate n, and uses integer arithmetic. Research
suggests values of 8=1/2", p=1/2°, and n=3 will work well. The original value for 1
in 4.3BSD UNIX was 2; it was changed to 4 in 4.4 BSD UNIX.

Figure 13.11 uses a set of randomly generated values to illustrate how the comput-
ed timeout changes as the roundtrip time varies. Although the roundtrip times are artifi-
cial, they follow a pattern observed in practice: successive packets show small varia-
tions in delay as the overall average rises or falls.

tPhil Kam is an amateur radio enthusiast who developed this algorithm to allow TCP communication
across a high-loss packet radio connection.
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Figure 13.11 A set of 200 (randomly generated) roundtrip times shown as
dots, and the TCP retransmission timer shown as a solid line.
The timeout increases when delay varies. .

Note that frequent change in the roundtrip time, including a cycle of increase and
decrease, can produce an increase in the retransmission timer. Furthermore, although
the timer tends to increase quickly when delay rises, it does not decrease as rapidly
when delay falls.

Figure 13.12 uses the data points from Figure 13.10 to show how TCP responds to
the extreme case of variance in delay. Recall that the goal is to have the retransmission
timer estimate the actual roundtrip time as closely as possible without underestimating.
The figure shows that although the timer responds quickly, it can underestimate. For
example, between the two successive datagrams marked with arrows, the delay doubles
from less than 4 seconds to more than 8. More important, the abrupt change follows a
period of relative stability in which the variation in delay is small, making it impossible
for any algorithm to anticipate the change. In the case of the TCP algorithm, because
the timeout (approximately 5) substantially underestimates the large delay, an unneces-
sary retransmission occurs. However, the estimate responds quickly to the increase in
delay, meaning that successive packets arrive without retransmission.
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Figure 13.12 The TCP retransmission timer for the data from Figure 13.10.

Arrows mark two successive datagrams where the delay dou-
bles.

13.20 Response To Congestion

It may seem that TCP software could be designed by considering the interaction
between the two endpoints of a connection and the communication delays between
those endpoints. In practice, however, TCP must also react to congestion in the inter-
net. Congestion is a condition of severe delay caused by an overload of datagrams at
one or more switching points (e.g., at routers). When congestion occurs, delays in-
crease and the router begins to enqueue datagrams until it can route them. We must
remember that each router has finite storage capacity and that datagrams compete for

that storage (i.e., in a datagram based internet, there is no preallocation of resources to

individual TCP connections). In the worst case, the total number of datagrams arriving

at the congested router grows until the router reaches capacity and starts to drop da-
tagrams.
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Endpoints do not usually know the details of where congestion has occurred or
why. To them, congestion simply means increased delay. Unfortunately, most tran-
sport protocols use timeout and retransmission, so they respond to increased delay by
retransmitting datagrams. Retransmissions aggravate congestion instead of alleviating
it. If unchecked, the increased traffic will produce increased delay, leading to increased
traffic, and so on, until the network becomes useless. The condition is known as
congestion collapse.

To avoid congestion collapse, TCP must reduce transmission rates when conges-
tion occurs. Routers watch queue lengths and use techniques like ICMP source quench
to inform hosts that congestion has occurredt, but transport protocols like TCP can help
avoid congestion by reducing transmission rates automatically whenever delays occur.
Of course, algorithms to avoid congestion must be constructed carefully because even
under normal operating conditions an internet will exhibit wide variation in round trip
delays.

To avoid congestion, the TCP standard now recommends using two techniques:
slow-start and multiplicative decrease. They are related and can be implemented easily.
We said that for each connection, TCP must remember the size of the receiver’'s win-
dow (i.e., the buffer size advertised in acknowledgements). To control congestion TCP
maintains a second limit, called the congestion window limit or congestion window, that
it uses to restrict data flow to less than the receiver’s buffer size when congestion oc-
curs. That is, at any time, TCP acts as if the window size is:

Allowed_window = min( receiver_advertisement, congestion_window )

In the steady state on a non-congested connection, the congestion window is the same
size as the receiver's window. Reducing the congestion window reduces the traffic
TCP will inject into the connection. To estimate congestion window size, TCP assumes
that most datagram loss comes from congestion and uses the following strategy:

Multiplicative Decrease Congestion Avoidance: Upon loss of a seg-
ment, reduce the congestion window by half (down to a minimum of at
least one segment). For those segments that remain in the allowed
window, backoff the retransmission timer exponentially.

Because TCP reduces the congestion window by half for every loss, it decreases the
window exponentially if loss continues. In other words, if congestion is likely, TCP
reduces the volume of traffic exponentially and the rate of retransmission exponentially.
If loss continues, TCP eventually limits transmission to a single datagram and continues
to double timeout values before retransmitting. The 1dea is to provide quick and signifi-
cant traffic reduction to allow routers enough time to clear the datagrams already in
their queues.

How can TCP recover when congestion ends? You might suspect that TCP should
reverse the multiplicative decrease and double the congestion window when traffic be-
gins to flow again. However, doing so produces an unstable system that oscillates wild-

+In a congested network, queue lengths grow exponentially for a significant time.
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ly between no traffic and congestion. Instead, TCP uses a technique called slow-startt
to scale up transmission:

Slow-Start (Additive) Recovery: Whenever starting traffic on a new
connection or increasing traffic after a period of congestion, start the
congestion window at the size of a single segment and increase the
congestion window by one segment each time an acknowledgement ar-
rives.

Slow-start avoids swamping the internet with additional traffic immediately after
congestion clears or when new connections suddenly start.

The term slow-start may be a misnomer because under ideal conditions, the start is
not very slow. TCP initializes the congestion window to /, sends an initial segment,
and waits. When the acknowledgement arrives, it increases the congestion window to
2, sends two segments, and waits. When the two acknowledgements arrive they each
increase the congestion window by /, so TCP can send 4 segments. Acknowledge-
ments for those will increase the congestion window to 8. Within four round-trip times,
TCP can send /6 segments, often enough to reach the receiver’s window limit. Even
for extremely large windows, it takes only log,N round trips before TCP can send N
segments.

To avoid increasing the window size too quickly and causing additional conges-
tion, TCP adds one additional restriction. Once the congestion window reaches one half
of its original size before congestion, TCP enters a congestion avoidance phase and
slows down the rate of increment. During congestion avoidance, it increases the
congestion window by / only if all segments in the window have been acknowledged.

Taken together, slow-start increase, multiplicative decrease, congestion avoidance,
measurement of variation, and exponential timer backoff improve the performance of
TCP dramatically without adding any significant computational overhead to the protocol
software. Versions of TCP that use these techniques have improved the performance of
previous versions by factors of 2 to /0.

13.21 Congestion, Tail Drop, And TCP

We said that communication protocols are divided into layers to make it possible
for designers to focus on a single problem at a time. The separation of functionality
into layers is both necessary and useful — it means that one layer can be changed
without affecting other layers, but it means that layers operate in isolation. For exam-
ple, because it operates end-to-end, TCP remains unchanged when the path between the
endpoints changes (e.g., routes change or additional networks routers are added). How-
ever, the isolation of layers restricts inter-layer communication. In particular, although
TCP on the original source interacts with TCP on the ultimate destination, it cannot in-
teract with lower layer elements along the path. Thus, neither the sending nor receiving

+The term slow-start is attributed to John Nagle; the technique was originally called soft-start.
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TCP receives reports about conditions in the network, nor does either end inform lower
layers along the path before transferring data.

Researchers have observed that the lack of communication between layers means
that the choice of policy or implementation at one layer can have a dramatic effect on
the performance of higher layers. In the case of TCP, policies that routers use to handle
datagrams can have a significant effect on both the performance of a single TCP con-
nection and the aggregate throughput of all connections. For example, if a router delays
some datagrams more than otherst, TCP will back off its retransmission timer. If the
delay exceeds the retransmission timeout, TCP will assume congestion has occurred.
Thus, although each layer is defined independently, researchers try to devise mechan-
isms and implementations that work well with protocols in other layers.

The most important interaction between IP implementation policies and TCP oc-
curs when a router becomes overrun and drops datagrams. Because a router places each
incoming datagram in a queue in memory until it can be processed, the policy focuses
on queue management. When datagrams arrive faster than they can be forwarded, the
queue grows; when datagrams arrive slower than they can be forwarded, the queue
shrinks. However, because memory is finite, the queue cannot grow without bound.
Early router software used a tail-drop policy to manage queue overflow:

Tail-Drop Policy For Routers: if the input queue is filled when a da-
tagram arrives, discard the datagram.

The name tail-drop arises from the effect of the policy on an arriving sequence of
datagrams. Once the queue fills, the router begins discarding all additional datagrams.
That is, the router discards the “‘tail’” of the sequence.

Tail-drop has an interesting effect on TCP. In the simple case where datagrams
traveling through a router carry segments from a single TCP connection, the loss causes
TCP to enter slow-start, which reduces throughput until TCP begins receiving ACKs
and increases the congestion window. A more severe problem can occur, however,
when the datagrams traveling through a router carry segments from many TCP connec-
tions because tail-drop can cause global synchronization. To see why, observe that da-
tagrams are typically multiplexed, with successive datagrams each coming from a dif-
ferent source. Thus, a tail-drop policy makes it likely that the router will discard one
segment from N connections rather than N segments from one connection. The simul-
taneous loss causes all N instances of TCP to enter slow-start at the same time.

13.22 Random Early Discard (RED)

How can a router avoid global synchronization? The answer lies in a clever
scheme that avoids tail-drop whenever possible. Known as Random Early Discard,
Random Early Drop, or Random Early Detection, the scheme is more frequently re-
ferred to by its acronym, RED. A router that implements RED uses two threshold

+Technically, variance in delay is referred to as jitrer.
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values to mark positions in the queue: Tmin and Tmaxr. The general operation of RED
can be described by three rules that determine the disposition of each arriving datagram:

e If the queue currently contains fewer than Tmin datagrams, add the new
datagram to the queue.

e If the queue contains more than Timax datagrams, discard the new da-
tagram.

e If the queue contains between Tmin and Tmax datagrams, randomly dis-
card the datagram according to a probability, p.

The randomness of RED means that instead of waiting until the queue overflows and
then driving many TCP connections into slow-start, a router slowly and randomly drops
datagrams as congestion increases. We can summarize:

RED Policy For Routers: if the input queue is full when a datagram
arrives, discard the datagram; if the input queue is not full but the
size exceeds a minimum threshold, avoid synchronization by discard-
ing the datagram with probability p.

The key to making RED work well lies in the choice of the thresholds Tmin and
Tonax, and the discard probability p. Tmin must be large enough to ensure that the output
link has high utilization. Furthermore, because RED operates like tail-drop when the
queue size exceeds Tmax, the value must be greater than Twmin by more than the typical
increase in queue size during one TCP round trip time (e.g., set Tmax at least twice as
large as Tmin). Otherwise, RED can cause the same global oscillations as tail-drop.

Computation of the discard probability, p. is the most complex aspect of RED. In-
stead of using a constant, a new value of p is computed for each datagram; the value
depends on the relationship between the current queue size and the thresholds. To
understand the scheme, observe that all RED processing can be viewed probabilistically.
When the queue size is less than Tmin, RED does not discard any datagrams, making the
discard probability 0. Similarly, when the queue size is greater than Tmax, RED dis-
cards all datagrams, making the discard probability /. For intermediate values of queue
size, (i.e., those between Trmin and Tmax), the probability can vary from 0 to / linearly.

Although the linear scheme forms the basis of RED’s probability computation, a
change must be made to avoid overreacting. The need for the change arises because
network traffic is bursty, which results in rapid fluctuations of a router’s queue. If RED
used a simplistic linear scheme, later datagrams in each burst would be assigned high
probability of being dropped (because they arrive when the queue has more entries).
However, a router should not drop datagrams unnecessarily because doing so has a
negative impact on TCP throughput. Thus, if a burst is short, it is unwise to drop da-
tagrams because the queue will never overflow. Of course, RED cannot postpone dis-
card indefinitely because a long-term burst will overflow the queue, resulting in a tail-
drop policy which has the potential to cause global synchronization problems.
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How can RED assign a higher discard probability as the queue fills without dis-
carding datagrams from each burst? The answer lies in a technique borrowed from
TCP: instead of using the actual queue size at any instant, RED computes a weighted
average queue size, avg, and uses the average size to determine the probability. The
value of avg is an exponential weighted average, updated each time a datagram arrives
according to the equation:

avg = (1-v)*Old_avg + y* Current_queue_size

where Y denotes a value between 0 and /. If y is small enough, the average will track
long term trends, but will remain immune to short bursts+

In addition to equations that determine y, RED contains other details that we have
glossed over. For example, RED computations can be made extremely efficient by
choosing constants as powers of two and using integer arithmetic. Another important
detail concerns the measurement of queue size, which affects both the RED computation
and its overall effect on TCP. In particular, because the time required to forward a da-
tagram is proportional to its size, it makes sense to measure the queue in octets rather
than in datagrams; doing so requires only minor changes to the equations for p and .
Measuring queue size in octets affects the type of traffic dropped because it makes the
discard probability proportional to the amount of data a sender puts in the stream rather
than the number of segments. Small datagrams (e.g., those that carry remote login traff-
ic or requests to servers) have lower probability of being dropped than large datagrams
(e.g., those that carry file transfer traffic). One positive consequence of using size is
that when acknowledgements travel over a congested path, they have a lower probabili-
ty of being dropped. As a result, if a (large) data segment does arrive, the sending TCP
will receive the ACK and will avoid unnecessary retransmission.

Both analysis and simulations show that RED works well. It handles congestion,
avoids the synchronization that results from tail drop, and allows short bursts without
dropping datagrams unnecessarily. The IETF now recommends that routers implement
RED.

13.23 Establishing A TCP Connection

To establish a connection, TCP uses a three-way handshake. In the simplest case,
the handshake proceeds as Figure 13.13 shows.

+An example value suggested for v is .002.
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Events At Site 1 Network Messages Events At Site 2

Send SYN seq=x

Receive SYN segment
Send SYN seg=y, ACK x+1

\

Receive SYN + ACK segment
Send ACK y+1

Receive ACK segment

Figure 13.13 The sequence of messages in a three-way handshake. Time
proceeds down the page; diagonal lines represent segments sent
between sites. SYN segments carry initial sequence number
information.

The first segment of a handshake can be identified because it has the SYNT bit set in
the code field. The second message has both the SYN bit and ACK bits set, indicating
that it acknowledges the first SYN segment as well as continuing the handshake. The
final handshake message is only an acknowledgement and is merely used to inform the
destination that both sides agree that a connection has been established.

Usually, the TCP software on one machine waits passively for the handshake, and
the TCP software on another machine initiates it. However, the handshake is carefully
designed to work even if both machines attempt to initiate a connection simultaneously.
Thus, a connection can be established from either end or from both ends simultaneous-
ly. Once the connection has been established, data can flow in both directions equally
well. There is no master or slave.

The three-way handshake is both necessary and sufficient for correct synchroniza-
tion between the two ends of the connection. To understand why, remember that TCP
builds on an unreliable packet delivery service, so messages can be lost, delayed, dupli-
cated, or delivered out of order. Thus, the protocol must use a timeout mechanism and
retransmit lost requests. Trouble arises if retransmitted and original requests arrive
while the connection is being established, or if retransmitted requests are delayed until
after a connection has been established, used, and terminated. A three-way handshake
(plus the rule that TCP ignores additional requests for connection after a connection has
been established) solves these problems.

’

tSYN stands for synchronization; it is pronounced ‘‘sin."
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13.24 Initial Sequence Numbers

The three-way handshake accomplishes two important functions. It guarantees that
both sides are ready to transfer data (and that they know they are both ready), and it al-
lows both sides to agree on initial sequence numbers. Sequence numbers are sent and
acknowledged during the handshake. Each machine must choose an initial sequence
number at random that it will use to identify bytes in the stream it is sending. Sequence
numbers cannot always start at the same value. In particular, TCP cannot merely
choose sequence I every time it creates a connection (one of the exercises examines
problems that can arise if it does). Of course, it is important that both sides agree on an
initial number, so octet numbers used in acknowledgements agree with those used in
data segments.

To see how machines can agree on sequence numbers for two streams after only
three messages, recall that each segment contains both a sequence number field and an
acknowledgement field. The machine that initiates a handshake, call it A, passes its ini-
tial sequence number, x, in the sequence field of the first SYN segment in the three-way
handshake. The second machine, B, receives the SYN, records the sequence number,
and replies by sending its initial sequence number in the sequence field as well as an
acknowledgement that specifies B expects octet x+/. In the final message of the
handshake, A ‘‘acknowledges’’ receiving from B all octets through y. In all cases, ack-
nowledgements follow the convention of using the number of the next octet expected.

We have described how TCP usually carries out the three-way handshake by ex-
changing segments that contain a minimum amount of information. Because of the pro-
tocol design, it is possible to send data along with the initial sequence numbers in the
handshake segments. In such cases, the TCP software must hold the data until the
handshake completes. Once a connection has been established, the TCP software can
release data being held and deliver it to a waiting application program quickly. The
reader is referred to the protocol specification for the details.

13.25 Closing a TCP Connection

Two programs that use TCP to communicate can terminate the conversation grace-
fully using the close operation. Internally, TCP uses a modified three-way handshake to
close connections. Recall that TCP connections are full duplex and that we view them
as containing two independent stream transfers, one going in each direction. When an
application program tells TCP that it has no more data to send, TCP will close the con-
nection in one direction. To close its half of a connection, the sending TCP finishes
transmitting the remaining data, waits for the receiver to acknowledge it, and then sends
a segment with the FIN bit set. The receiving TCP acknowledges the FIN segment and
informs the application program on its end that no more data is available (e.g., using the
operating system’s end-of-file mechanism).

Once a connection has been closed in a given direction, TCP refuses to accept
more data for that direction. Meanwhile, data can continue to flow in the opposite
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direction until the sender closes it. Of course, acknowledgements continue to flow back
to the sender even after a connection has been closed. When both directions have been
closed, the TCP software at each endpoint deletes its record of the connection.

The details of closing a connection are even more subtle than suggested above be-
cause TCP uses a modified three-way handshake to close a connection. Figure 13.14 il-
lustrates the procedure.

Events At Site 1 Network Messages Events At Site 2

(application closes connection)

Send FIN seq=x \
Receive FIN segment
Send ACK x+1
/ (inform application)
Receive ACK segment

(application closes connection)
/ Send FIN seq=y, ACK x+1
Receive FIN + ACK segment
Send ACK y+1 \

Receive ACK segment

Figure 13.14 The modified three-way handshake used to close connections.
The site that receives the first FIN segment acknowledges it
immediately and then delays before sending the second FIN
segment.

The difference between three-way handshakes used to establish and break connections
occurs after a machine receives the initial FIN segment. Instead of generating a second
FIN segment immediately, TCP sends an acknowledgement and then informs the appli-
cation of the request to shut down. Informing the application program of the request
and obtaining a response may take considerable time (e.g., it may involve human in-
teraction). The acknowledgement prevents retransmission of the initial FIN segment
during the wait. Finally, when the application program instructs TCP to shut down the
connection completely, TCP sends the second FIN segment and the original site replies
with the third message, an ACK.
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13.26 TCP Connection Reset

Normally, an application program uses the close operation to shut down a connec-
tion when it finishes using it. Thus, closing connections is considered a normal part of
use, analogous to closing files. Sometimes abnormal conditions arise that force an ap-
plication program or the network software to break a connection. TCP provides a reset
facility for such abnormal disconnections.

To reset a connection, one side initiates termination by sending a segment with the
RST bit in the CODE field set. The other side responds to a reset segment immediately
by aborting the connection. TCP also informs the application program that a reset oc-
curred. A reset is an instantaneous abort that means that transfer in both directions
ceases immediately, and resources such as buffers are released.

13.27 TCP State Machine

Like most protocols, the operation of TCP can best be explained with a theoretical
model called a finite state machine. Figure 13.15 shows the TCP finite state machine,
with circles representing states and arrows representing transitions between them. The
label on each transition shows what TCP receives to cause the transition and what it
sends in response. For example, the TCP software at each endpoint begins in the
CLOSED state. Application programs must issue either a passive open command (to
wait for a connection from another machine), or an active open command (to initiate a
connection). An active open command forces a transition from the CLOSED state to
the SYN SENT state. When TCP follows the transition, it emits a SYN segment. When
the other end returns a segment that contains a SYN plus ACK, TCP moves to the ES-
TABLISHED state and begins data transfer.

The TIMED WAIT state reveals how TCP handles some of the problems incurred
with unreliable delivery. TCP keeps a notion of maximum segment lifetime (MSL), the
maximum time an cold segment can remain alive in an internet. To avoid having seg-
ments from a previous connection interfere with a current one, TCP moves to the
TIMED WAIT state after closing a connection. It remains in that state for twice the
maximum segment lifetime before deleting its record of the connection. If any dupli-
cate segments happen to arrive for the connection during the timeout interval, TCP will
reject them. However, to handle cases where the last acknowledgement was lost, TCP
acknowledges valid segments and restarts the timer. Because the timer allows TCP to
distinguish old connections from new ones, it prevents TCP from responding with a
RST (reset) if the other end retransmits a FIN request.



242 Reliable Stream Transport Service (TCP) Chap. 13

ﬂ anything / reset

CLOSED

begin

~

passive open

active open/syn

syn/syn + ack

send/syn

syn/syn + ack

timeout /
reset

syn + ack/ack

ESTAB-
LISHED

fin/ack

close/fin

close/ fin
close/ fin

fin/ack

fin-ack /ack

timeout after 2 segment lifetimes
\j )

fin/ack _ [ TIMED

WAIT

Figure 13.15 The TCP finite state machine. Each endpoint begins in the
closed state. Labels on transitions show the input that caused
the transition followed by the output if any.
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13.28 Forcing Data Delivery

We have said that TCP is free to divide the stream of data into segments for
transmission without regard to the size of transfer that application programs use. The
chief advantage of allowing TCP to choose a division is efficiency. It can accumulate
enough octets in a buffer to make segments reasonably long, reducing the high overhead
that occurs when segments contain only a few data octets.

Although buffering improves network throughput, it can interfere with some appli-
cations. Consider using a TCP connection to pass characters from an interactive termi-
nal to a remote machine. The user expects instant response to each keystroke. If the
sending TCP buffers the data, response may be delayed, perhaps for hundreds of keys-
trokes. Similarly, because the receiving TCP may buffer data before making it available
to the application program on its end, forcing the sender to transmit data may not be
sufficient to guarantee delivery.

To accommodate interactive users, TCP provides a push operation that an applica-
tion program can use to force delivery of octets currently in the stream without waiting
for the buffer to fill. The push operation does more than force TCP to send a segment.
It also requests TCP to set the PSH bit in the segment code field, so the data will be
delivered to the application program on the receiving end. Thus, when sending data
from an interactive terminal, the application uses the push function after each keystroke.
Similarly, application programs can force output to be sent and displayed on the termi-
nal promptly by calling the push function after writing a character or line.

13.29 Reserved TCP Port Numbers

Like UDP, TCP combines static and dynamic port binding, using a set of well-
known port assignments for commonly invoked programs (e.g., electronic mail), but
leaving most port numbers available for the operating system to allocate as programs
need them. Although the standard originally reserved port numbers less than 256 for
use as well-known ports, numbers over 1024 have now been assigned. Figure 13.16
lists some of the currently assigned TCP ports. It should be pointed out that although
TCP and UDP port numbers are independent, the designers have chosen to use the same
integer port numbers for any service that is accessible from both UDP and TCP. For
example, a domain name server can be accessed either with TCP or with UDP. In ei-
ther protocol, port number 53 has been reserved for servers in the domain name system.

13.30 TCP Performance

As we have seen, TCP is a complex protocol that handles communication over a
wide variety of underlying network technologies. Many people assume that because
TCP tackles a much more complex task than other transport protocols, the code must be
cumbersome and inefficient. Surprisingly, the generality we discussed does not seem to
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hinder TCP performance. Experiments at Berkeley have shown that the same TCP that
operates efficiently over the global Internet can deliver 8 Mbps of sustained throughput
of user data between two workstations on a 10 Mbps Ethernett. At Cray Research,
Inc., researchers have demonstrated TCP throughput approaching a gigabit per second.

Decimal Keyword UNIX Keyword Description
0 Reserved
1 TCPMUX - TCP Multiplexor
7 ECHO echo Echo
9 DISCARD discard Discard
11 USERS systat Active Users
13 DAYTIME daytime Daytime
15 - netstat Network status program
17 QUOTE gotd Quote of the Day
19 CHARGEN chargen Character Generator
20 FTP-DATA ftp-data File Transfer Protocol (data)
21 FTP ftp File Transfer Protocol
22 SSH ssh Secure Shell
23 TELNET telnet Terminal Connection
25 SMTP smtp Simple Mail Transport Protocol
37 TIME time Time
43 NICNAME whois Who Is
53 DOMAIN nameserver Domain Name Server
67 BOOTPS bootps BOOTP or DHCP Server
77 - rjie any private RJE service
79 FINGER finger Finger
80 Www www World Wide Web Server
88 KERBEROS kerberos Kerberos Security Service
95 SUPDUP supdup SUPDUP Protocol
101 HOSTNAME hostnames NIC Host Name Server
102 ISO-TSAP iso-tsap ISO-TSAP
103 X400 x400 X.400 Mail Service
104 X400-SND x400-snd X.400 Mail Sending
110 POP3 pop3 Post Office Protocol Vers. 3
111 SUNRPC sunrpc SUN Remote Procedure Call
113 AUTH auth Authentication Service
117 UUCP-PATH uucp-path UUCP Path Service
119 NNTP nntp USENET News Transfer Protocol
123 NTP ntp Network Time Protocol
139 NETBIOS-SSN - NETBIOS Session Service
161 SNMP snmp Simple Network Management Protocol

Figure 13.16 Examples of currently assigned TCP port numbers. To the ex-

tent possible, protocols like UDP use the same numbers.

tEthernet, IP, and TCP headers and the required inter-packet gap account for the remaining bandwidth.
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13.31 Silly Window Syndrome And Small Packets

Researchers who helped developed TCP observed a serious performance problem
that can result when the sending and receiving applications operate at different speeds.
To understand the problem, remember that TCP buffers incoming data, and consider
what can happen if a receiving application chooses to read incoming data one octet at a
time. When a connection is first established, the receiving TCP allocates a buffer of K
bytes. and uses the WINDOW field in acknowledgement segments to advertise the avail-
able buffer size to the sender. If the sending application generates data quickly, the
sending TCP will transmit segments with data for the entire window. Eventually, the
sender will receive an acknowledgement that specifies the entire window has been
filled, and no additional space remains in the receiver’s buffer.

When the receiving application reads an octet of data from a full buffer, one octet
of space becomes available. We said that when space becomes available in its buffer,
TCP on the receiving machine generates an acknowledgement that uses the WINDOW
field to inform the sender. In the example, the receiver will advertise a window of /
octet. When it learns that space is available, the sending TCP responds by transmitting
a segment that contains one octet of data.

Although single-octet window advertisements work correctly to keep the receiver’s
buffer filled, they result in a series of small data segments. The sending TCP must
compose a segment that contains one octet of data, place the segment in an IP datagram,
and transmit the result. When the receiving application reads another octet, TCP gen-
erates anuvir~r acknowledgement, which causes the sender to transmit another segment
that contains one octet of data. The resulting interaction can reach a steady state in
which TCP senu, a separate segment for each octet of data.

Transferring small segments consumes unnecessary network bandwidth and intro-
duces unnecessary computational overhead. The transmission of small segments con-
sumes unnecessary network bandwidth because each datagram carries only one octet of
data; the ratio of header to data is large. Computational overhead arises because TCP
on both the sending and receiving computers must process each segment. The sending
TCP software must allocate buffer space, form a segment header, and compute a check-
sum for the segment. Similarly, IP software on the sending machine must encapsulate
the segment in a datagram, compute a header checksum, route the datagram, and
transfer it to the appropriate network interface. On the receiving machine, IP must veri-
fy the IP header checksum and pass the segment to TCP. TCP must verify the segment
checksum, examine the sequence number, extract the data, and place it in a buffer.

Although we have described how small segments result when a receiver advertises
a small available window, a sender can also cause each segment to contain a small
amount of data. For example, imagine a TCP implementation that aggressively sends
data whenever it is available, and consider what happens if a sending application gen-
erates data one octet at a time. After the application generates an octet of data, TCP
creates and transmits a segment. TCP can also send a small segment if an application
generates data in fixed-sized blocks of B octets, and the sending TCP extracts data from
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the buffer in maximum segment sized blocks, M, where M # B, because the last block in
a buffer can be small.

Known as silly window syndrome (SWS), the problem plagued early TCP imple-
mentations. To summarize.

Early TCP implementations exhibited a problem known as silly win-
dow syndrome in which each acknowledgement advertises a small

amount of space available and each segment carries a small amount
of data.

13.32 Avoiding Silly Window Syndrome

TCP specifications now include heuristics that prevent silly window syndrome. A
heuristic used on the sending machine avoids transmitting a small amount of data in
each segment. Another heuristic used on the receiving machine avoids sendin; small
increments in window advertisements that can trigger small data packets. Although the
heuristics work well together, having both the sender and receiver avoid silly window
helps ensure good performance in the case that one end of a connection fails to correct-
ly implement silly window avoidance.

In practice, TCP software must contain both sender and receiver silly window
avoidance code. To understand why, recall that a TCP connection is full duplex — data
can flow in either direction. Thus, an implementation of TCP includes code to send
data as well as code to receive it.

13.32.1 Receive-Side Silly Window Avoidance

The heuristic a receiver uses to avoid silly window is straightforward and easiest to
understand. In general, a receiver maintains an internal record of the currently available
window, but delays advertising an increase in window size to the sender until the win-
dow can advance a significant amount. The definition of ‘‘significant’’ depends on the
receiver’s buffer size and the maximum segment size. TCP defines it to be the
minimum of one half of the receiver’s buffer or the number of data octets in a
maximum-sized segment.

Receive-side silly window prevents small window advertisements in the case where
a receiving application extracts data octets slowly. For example, when a receiver’s
buffer fills completely, it sends an acknowledgement that contains a zero window adver-
tisement. As the receiving application extracts. octets from the buffer, the receiving
TCP computes the newly available space in the buffer. Instead of sending a window
advertisement immediately, however, the receiver waits until the available space reaches
one half of the total buffer size cr a maximum sized segment. Thus, the sender always
receives large increments in the current window, allowing it to transfer large segments.
The heuristic can be summarized as follows.
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Receive-Side Silly Window Avoidance: Before sending an updated
window advertisement after advertising a zero window, wait for space
to become available that is either at least 50% of the total buffer size
or equal to a maximum sized segment.

13.32.2 Delayed Acknowledgements

Two approaches have been taken to implement silly window avoidance on the re-
ceive side. In the first approach, TCP acknowledges each segment that arrives, but does
not advertise an increase in its window until the window reaches the limits specified by
the silly window avoidance heuristic. In the second approach, TCP delays sending an
acknowledgement when silly window avoidance specifies that the window is not suffi-
ciently large to advertise. The standards recommend delaying acknowledgements.

Delayed acknowledgements have both advantages and disadvantages. The chief
advantage arises because delayed acknowledgements can decrease traffic and thereby in-
crease throughput. For example, if additional data arrives during the delay period. a
single acknowledgement will acknowledge all data received. If the receiving applica-
tion generates a response immediately after data arrives (e.g., character echo in a remote
login session), a short delay may permit the acknowledgement to piggyback on a data
segment. Furthermore, TCP cannot move its window until the receiving application ex-
tracts data from the buffer. In cases where the receiving application reads data as soon
as it arrives, 2 short delay allows TCP to send a single segment that acknowledges the
aata and advertises an updated window. Without delayed acknowledgements, TCP will
acknowledge the arrival of data immediately, and later send an additional acknowledge-
ment to update the window size.

The disadvantages of delayed acknowledgements should be clear. Most important.
if a receiver delays acknowledgements too long, the sending TCP will retransmit the
segment. Unnecessary retransmissions lower throughput because they waste network
bandwidth. In addition, retransmissions require computational overhead on the sending
and receiving machines. Furthermore, TCP uses the arrival of acknowledgements to es-
timate round trip times; delaying acknowledgements can confuse the estimate and make
retransmission times too long.

To avoid potential problems, the TCP standards piace a limit on the time TCP de-
lays an acknowledgement. Implementations cannot delay an acknowledgement for
more than 500 milliseconds. Furthermore, to guarantee that TCP receives a sufficient
number of round trip estimates, the standard recommends that a receiver should ack-
nowledge at least every other data segment.
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13.32.3 Send-Side Silly Window Avoidance

The heuristic a sending TCP uses to avoid silly window syndrome is both surpris-
ing and elegant. Recall that the goal is to avoid sending small segments. Also recall
that a sending application can generate data in arbitrarily small blocks (e.g., one octet at
a time). Thus, to achieve the goal, a sending TCP must allow the sending application to
make multiple calls to write, and must collect the data transferred in each call before
transmitting it in a single, large segment. That is, a sending TCP must delay sending a
segment until it can accumulate a reasonable amount of data. The technique is known
as clumping.

The question arises, **How long should TCP wait before transmitting data?” On
one hand, if TCP waits too long, the application experiences large delays. More impor-
tant. TCP cannot know whether to wait because it cannot know whether the application
will generate more data in the near future. On the other hand, if TCP does not wait
long enough, segments will be small and throughput will be low.

Protocols designed prior to TCP confronted the same problem and used techniques
to clump data into larger packets. For example, to achieve efficient transfer across a
network, early remote terminal protocols delayed transmitting each keystroke for a few
hundred milliseconds to determine whether the user would continue to press keys. Be-
cause TCP is designed to be general, however, it can be used by a diverse set of appli-
cations. Characters may travel across a TCP connection because a user is typing on a
keyboard or because a program is transferring a file. A fixed delay is not optimal for
all applications.

Like the algorithm TCP uses for retransmission and the slow-start algorithm used
to avoid congestion, the technique a sending TCP uses to avoid sending small packets is
adaptive — the delay depends on the current performance of the internet. Like slow-
start, send-side silly window avoidance is called self clocking because it does not com-
pute delays. Instead, TCP uses the arrival of an acknowledgement to trigger the
transmission of additional packets. The heuristic can be summarized:

Send-Side Silly Window Avoidance: When a sending application gen-
erates additional data to be sent over a connection for which previous
data has been transmitted bur not acknowledged, place the new data
in the output buffer as usual, but do not send additional segments un-
til there is sufficient data to fill a maximum-sized segment. If still
waiting to send when an acknowledgement arrives, send all data that
has accumulated in the buffer. Apply the rule even when the user re-
quests a push operation.

If an application generates data one octet at a time, TCP will send the first octet
immediately. However, until the ACK arrives, TCP will accumulate additional octets in
its buffer. Thus, if the application is reasonably fast compared to the network (i.e., a
file transfer), successive segments will each contain many octets. If the application is
slow compared to the network (e.g., a user typing on a keyboard), smali segments will
be sent without long delay.
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Known as the Nagle algorithm after its inventor, the technique is especially elegant
because it requires little computational overhead. A host does not need to keep separate
timers for each connection, nor does the host need to examine a clock when an applica-
tion generates data. More important, although the technique adapts to arbitrary combi-
nations of network delay, maximum segment size, and application speed, it does not
lower throughput in conventional cases.

To understand why throughput remains high for conventional communication, ob-
serve that applications optimized for high throughput do not generate data one octet at a
time (doing so would incur unnecessary operating system overhead). Instead, such ap-
plications write large blocks of data with each call. Thus, the outgoing TCP buffer be-
gins with sufficient data for at least one maximum size segment. Furthermore, because
the application produces data faster than TCP can transfer data, the sending buffer
remains nearly full, and TCP does not delay transmission. As a result, TCP continues
to send segments at whatever rate the internet can tolerate, while the application contin-
ues to fill the buffer. To summarize:

TCP now requires the sender and receiver to implement heuristics
that avoid the silly window syndrome. A receiver avoids advertising a
small window, and a sender uses an adaptive scheme to delay
transmission so it can clump data into large segments.

13.33 Summary

The Transmission Control Protocol, TCP, defines a key service provided by an in-
ternet, namely, reliable stream delivery. TCP provides a full duplex connection
between two machines, allowing them to exchange large volumes of data efficiently.

Because it uses a sliding window protocol, TCP can make efficient use of a net-
work. Because it makes few assumptions about the underlying delivery system, TCP is
flexible enough to operate over a large variety of delivery systems. Because it provides
flow control, TCP allows systems of widely varying speeds to communicate:

The basic unit of transfer used by TCP is a segment. Segments are used to pass
data or control information (e.g., to allow TCP software on two machines to establish
connections or break them). The segment format permits a machine to piggyback ack-
nowledgements for data flowing in one direction by including them in the segment
headers of data flowing in the opposite direction.

TCP implements flow control by having the receiver advertise the amount of data
it is willing to accept. It also supports out-of-band messages using an urgent data facili-
ty and forces delivery using a push mechanism.

The current TCP standard specifies exponential backoff for retransmission timers
and congestion avoidance algorithms like slow-start, multiplicative decrease, and addi-
tive increase. In addition, TCP uses heuristics to avoid transferring small packets. Fi-
nally, the IETF recommends that routers use RED instead of tail-drop because doing so
avoids TCP synchronization and improves throughput.
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FOR FURTHER STUDY

The standard for TCP can be found in Postel [RFC 793}: Braden [RFC 1122] con-
tains an update that clarifies several points. Clark [RFC 813} describes TCP window
management, Clark [RFC 816] describes fault isolation and recovery, and Postel [RFC
879] reports on TCP maximum segment sizes. Nagle [RFC 896] comments on conges-
tion in TCP/IP networks and explains the effect of self clocking for send-side silly win-
dow avoidance. Karn and Partridge {1987] discusses estimation of round-trip times, and
presents Karn's algorithm. Jacobson [1988] gives the congestion control algorithms
that are now a required part of the standard. Floyd and Jacobson [1993] presents the
RED scheme, and Clark and Fang [1998] discusses an allocation framework that uses
RED. Tomlinson [1975] considers the three-way handshake in more detail. Mills [RFC
889] reports measurements of Internet round-trip delays. Jain [1986] describes timer-
based congestion control in a sliding window environment. Borman [April 1989] sum-
marizes experiments with high-speed TCP on Cray computers.

EXERCISES
»

13.1 TCP uses a finite field to contain stream sequence numbers. Study the protocol specifi-
cation to find out how it allows an arbitrary length stream to pass from one machine to
another.

13.2 The text notes that one of the TCP options permits a receiver to specity the maximum

segment size it is willing to accept. Why does TCP support an option to specify max-
imum segment size when it also has a window advertisement mechanism®?

13.3 Under what conditions of delay, bandwidth, load, and packet loss will TCP retransmit
significant volumes of data unnecessarily?

134 Lost TCP acknowledgements do not necessarily force retransmissions. Explain why.

13.5 Experiment with local machines to determine how TCP handles machine restart. Estab-
lish a connection (e.g., a remote login) and leave it idle. Wait for the destination
machine to crash and restant, and then force the local machine to send a TCP segment
(e.g., by typing characters to the remote login).

13.6 Imagine an implementation of TCP that discards segments that arrive out of order, even
if they fall in the current window. That is, the imagined version only accepts segments
that extend the byte stream it has already received. Does it work? How does it compare
to a standard TCP implementation?

13.7 Consider computation of a TCP checksum. Assume that although the checksum field in
the segment has nor been set to zero, the result of computing the checksum is zero.
What can you conclude?

13.8 What are the arguments for and against automatically closing idle connections?
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13.9

13.10

13.11

13.12

13.13

13.14

13.15

13.16

13.17

13.18

13.19

13.20

If two application programs use TCP to send data but only send one character per seg-
ment (e.g., by using the PUSH operation), what is the maximum percent of the network
bandwidth they will have for their data?

Suppose an implementation of TCP uses initial sequence number / when it creates a
connection. Explain how a system crash and restart can confuse a remote system into
believing that the old connection remained open.

Look at the round-trip time estimation algorithm suggested in the ISO TP-4 protocol
specification and compare it to the TCP algorithm discussed in this chapter. Which
would you prefer to use?

Find out how implementations of TCP must solve the overlapping segment problem.
The problem arises because the receiver must accept only one copy of all bytes from the
data stream even if the sender transmits two segments that partially overlap one another
(e.g., the first segment carries bytes 100 through 200 and the second carries bytes 150
through 250).

Trace the TCP finite state machine transitions for two sites that execute a passive and ac-
tive open and step through the three-way handshake.

Read the TCP specification to find out the exact conditions under which TCP can make
the transition from FIN WAIT-1 to TIMED WAIT.

Trace the TCP state transitions for two machines that agree to close a connection grace-
fully.

Assume TCP is sending segments using a maximum window size (64 Kbytes) on a chan-
nel that has infinite bandwidth and an average roundtrip time of 20 milliseconds. What
is the maximum throughput? How does throughput change if the roundtrip time in-
creases to 40 milliseconds (while bandwidth remains infinite)?

As the previous exercise illustrates, higher throughput can be achieved with 'arger win-
dows. One of the drawbacks of the TCP segment format is the size of the field devoted
to window advertisement. How can TCP be extended to allow larger windows without
changing the segment format?

Can you derive an equation that expresses the maximum possible TCP throughput as a
function of the network bandwidth, the network delay, and the time to process a segment
and generate an acknowledgement. Hint: consider the previous EXErcise.

Describe (abnormal) circumstances that can leave one end of a connection in state FIN
WAIT-2 indefinitely (hint: think of datagram loss and system crashes).

Show that when a router implements RED. the probability a packet will be discarded
from a particular TCP connection is proportional to the percentage of traffic that the con-
nection generates.
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Routing: Cores, Peers, And
Algorithms

14.1 Introduction

Previous chapters concentrate on the network level services TCP/IP offers and the
details of the protocols in hosts and routers that provide those services. In the discus-
sion, we assumed that routers always contain correct routes, and we observed that
routers can ask directly connected hosts to change routes with the ICMP redirect
mechanism.

This chapter considers two broad questions: ‘‘What values should routing tables
contain?’’ and ‘‘How can those values be obtained?”’ To answer the first question, we
will consider the relationship between internet architecture and routing. In particular,
we will discuss internets structured around a backbone and those composed of multiple
peer networks, and consider the consequences for routing. While many of our examples
are drawn from the global Internet, the ideas apply equally well to smaller corporate in-
ternets. To answer the second question, we will consider the two basic types of route
propagation algorithms and see how each supplies routing information automatically.

We begin by discussing routing in general. Latef sections concentrate on internet
architecture and describe the algorithms routers use to exchange routing information.
Chapters 15 and 16 continue to expand our discussion of routing. They explore proto-
cols that routers owned by two independent administrative groups use to exchange in-
formation, and protocols that a single group uses among all its routers.

253
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14.2 The Origin Of Routing Tables

Recall from Chapter 3 that IP routers provide active interconnections among net-
works. Each router attaches to two or more physical networks and forwards IP da-
tagrams among them, accepting datagrams that arrive over one network interface, and
routing them out over another interface. Except for destinations on directly attached
networks, hosts pass all IP traffic to routers which forward datagrams on toward their fi-
nal destinations. A datagram travels from router to router until it reaches a router that
attaches directly to the same network as the tinal destination. Thus, the router system
forms the architectural basis of an internet and handles all traffic except for direct
delivery from one host to another.

Chapter 8 describes the IP routing algorithm that hosts and routers follow to for-
ward datagrams, and shows how the algorithm uses a table to make routing decisions.
Each entry in the routing table specifies the network portion of a destination address
and gives the address of the next machine along a path used to reach that network. Like
hosts, routers directly deliver datagrams to destinations on networks to which the router
attaches.

Although we have seen the basics of datagram forwarding, we have not said how
hosts or routers obtain the information for their routing tables. The issue has two as-
pects: what values should be placed in the tables. and how routers obtain those values.
Both choices depend on the architectural complexity and size of the internet as well as
administrative policies.

In general, establishing routes involves initialization and update. Each router must
establish an initial set of routes when it starts, and it must update the table as routes
change (e.g., when a network interface fails). Initialization depends on the operating
system. 'In some systems, the router reads an initial routing table from secondary
storage at startup, keeping it resident in main memory. In others, the operating system
begins with an empty table which must be filled in by executing explicit commands
(e.g., commands found in a startup command script). Finally, some operating systems
start by deducing an initial set of routes from the set of addresses for the local networks
to which the machine attaches and contacting a neighboring machine to ask for addi-
tional routes.

Once an initial routing table has been built, a router must accommodate changes in
routes. In small, slowly changing internets, managers can establish and modify routes
by hand. In large, rapidly changing environments, however, manual update is impossi-
bly slow and prone to human errors. Automated methods are needed.

Before we can understand the automatic routing table update protocols used in IP
routers, we need to review several underlying ideas. The next sections do so, providing
the necessary conceptual foundation for routing. Later sections discuss internet archi-
tecture and the protocols routers use to exchange routing information.
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14.3 Routing With Partial Information

The principal difference between routers and typical hosts is that hosts usually
know little about the structure of the internet to which they connect. Hosts do not have
complete knowledge of all possible destination addresses, or even of all possible desti-
nation networks. In fact, many hosts have only two routes in their routing table: a route
for the local network and a default route for a nearby router. The host sends all nonlo-
cal datagrams to the local router for delivery. The point is that:

A host can route datagrams successfully even if it only has partial
routing information because it can rely on a router.

Can routers also route datagrams with only partial information? Yes, but only
under certain circumstances. To understand the criteria, imagine an internet to be a
foreign country crisscrossed with dirt roads that have directional signs posted at inter-
sections. Imagine that you have no map, cannot ask directions because you cannot
speak the local language, have no ideas about visible landmarks, but you need to travel
to a village named Sussex. You leave on your journey, following the only road out of
town and begin to look for directional signs. The first sign reads:

Norfolk to the left; Hammond to the right; others straight ahead.t

Because the destination you seek is not listed explicitly, you continue straight ahead. In
routing jargon, we say you follow a default route. After several more signs, you finally
find one that reads:

Essex to the left; Sussex to the right; others straight ahead.

You turn to the right, follow several more signs, and emerge on a road that leads to
Sussex.

Our imagined travel is analogous to a datagram traversing an internet, and the road
signs are analogous to routing tables in routers along the path. Without a map or other
navigational aids, travel is completely dependent on road signs, just as datagram routing
in an internet depends entirely on routing tables. Clearly, it is possible to navigate even
though each road sign contains only partial information.

A central question concerns correctness. As a traveler, you might ask, ‘‘How can I
be sure that following the signs will lead to my final destination?”’ You also might ask,
‘‘How can I be sure that following the signs will lead me to my destination along a
shortest path?”’ These questions may seem especially troublesome if you pass many
signs without finding your destination listed explicitly. Of course, the answers depend
on the topology of the road system and the contents of the signs, but the fundamental
idea is that when taken as a whole, the information on the signs should be both con-
sistent and complete. Looking at this another way, we see that it is not necessary for
each intersection to have a sign for every destination. The signs can list default paths as

tFortunately, signs are printed in a language you can read.
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long as all explicit signs point along a shortest path, and the turns for shortest paths to
all destinations are marked. A few examples will explain some ways that consistency
can be achieved.

At one extreme, consider a simple star-shaped topology of roads in which each vil-
lage has exactly one road leading to it, and all those roads meet at a central point. To
guarantee consistency, the sign at the central intersection must contain information
about all possible destinations. At the other extreme, imagine an arbitrary set of roads
with signs at all intersections listing all possible destinations. To guarantee consistency,
it must be true that at any intersection if the sign for destination D points to road R, no
road other than R leads to a shorter path to D.

Neither of these architectural extremes works well for an internet router system.
On one hand, the central intersection approach fails because no machine is fast enough
to serve as a central switch through which all traffic passes. On the other hand, having
information about all possible destinations in all routers is impractical because it re-
quires propagating large volumes of information whenever a change occurs or whenever
administrators need to check consistency. Thus. we seek a solution that allows groups
to manage local routers autonomously, adding new network interconnections and routes
without changing distant routers.

To help explain some of the architecture described later. consider a third topology
in which half the cities lie in the eastern part of the country and half lie in the western
part. Suppose a single bridge spans the river that separates east from west. Assume
that people living in the eastern part do not like westerners, so they are willing to allow
road signs that list destinations in the east but none in the west. Assume that people
living in the west do the opposite. Routing will be consistent if every road sign in the
east lists all eastern destinations explicitly and points the default path to the bridge,
while every road sign in the west lists all western destinations explicitly and points the
default path to the bridge.

14.4 Original Internet Architecture And Cores

Much of our knowledge of routing and route propagation protocols has been
derived from experience with the global Internet. When TCP/IP was first developed,
participating research sites were connected to the ARPANET, which served as the Inter-
net backbone. During initial experiments, each site managed routing tables and in-
stalled routes to other destinations by hand. As the fledgling Internet began to grow, it
became apparent that manual maintenance of routes was impractical; automated
mechanisms were needed.

The Internet designers selected a router architecture that consisted of a small, cen-
tral set of routers that kept complete information about all possible destinations, and a
larger set of outlying routers that kept partial information. In terms of our analogy, it is
like designating a small set of centrally located intersections to have signs that list all
destinations, and allowing the outlying intersections to list only local destinations. As
long as the default route at each outlying intersection points to one of the central inter-
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sections. travelers will eventually reach their destination. The advantage of using partial
information in outlying routers is that it permits local administrators to manage local
structural changes without atfecting other parts of the Internet. The disadvantage is that
it introduces the potential for inconsistency. In the worst case, an error in an outlying
router can make distant routes unreachable.

We can summarize these ideas:

The routing table in a given router contains partial information about
possible destinations.  Routing thar uses partial information allows
sites autonomy in making local routing changes, but introduces the
possibility of inconsistencies that may make some destinations un-
reachable from some sources.

Inconsistencies among routing tables usually arise from errors in the algorithms
that compute routing tables, incorrect data supplied to those algorithms, or from errors
that occur while transmitting the results to other routers.  Protocol designers look for
ways 1o limit the impact of crrors, with the objective being to keep all routes consistent
at all times. If routes become inconsistent for some reason. the routing protocols should
be robust enough to detect and correct the errors quickly. Most important, the protocols
should be designed to constrain the effect of errors.

14.5 Core Routers

Loosely speaking, early Internet routers could be partitioned into two groups. a
small set of core routers controlled by the Internet Network Operations Center (INOC),
and a larger set of noncore routerst controlled by individual groups. The core system
was designed to provide reliable, consistent, authoritative routes for all possible destina-
tions: it was the glue that held the Internet together and made universal interconnection
possible. By fiat. cach site assigned an Internet network address had to arrange to ad-
vertise that address to the core system. The core routers communicated among them-
selves, so they could guarantee that the information they shared was consistent. Be-
cause a central authority monitored and controlled the core routers, they were highly re-
liable.

To fully understand the core router system. it is necessary to recall that the Internet
evolved with a wide-area network. the ARPANET, already in place. When the Internet
experiments began, designers thought of the ARPANET as a main backbone on which
to build. Thus. a large part of the motivation for the core router system came from the
desire to connect local networks to the ARPANET. Figure 14.1 illustrates the idea.

+The terms stub and nonrouting have also been used in place of noncore.



258 Routirg: Cores, Peers. And Algorithms Chap. 14

< ARPANET BACKBONE

Core
Routers
@:al @ (Local Net 2 @cal Netn

Figure 14.1 The early Internet core router system viewed as a set of routers
that conncect local area networks to the ARPANET. Hosts on
the local netwerks pass all nonlocal traffic to the closest core
router.

To understand why <uch an architecture does not lend itself to routing with partial
information, suppose that » i:rge internet consists entirely of local area networks, each
attached to a backbone netwcrk through a router. Also imagine that some of the routers
rely on default routes. Now consider the path a datagram follows. At the source site,
the local router checks to see if it has an explicit route to the destination and, if not,
sends the datagram along the path specified by its default route. All datagrams for
which the router has no route follow the same default path regardless of their ultimate
destination. The next router along the path diverts datagrams for which it has an expli-
cit route, and sends the rest along its default route. To ensure global consistency, the
chain of default routes must reach every router in a giant cycle as Figure 14.2 shows.
Thus, the architecture requires all local sites to coordinate their default routes. In addi-
tion, depending on default routes can be inefficient cven when it is consistent. As Fig-
ure 14.2 shows, in the worst case a datagram will pass through all n routers as it travels
from source to destination instead of going directly across the backbone.

Figure 14.2 A set of routers connected to a backbone network with default
routes shown. Routing is inefficient even though it is consistent.
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To avoid the inefficiencies default routes cause, Internet designers arranged for all
core routers to exchange routing information so that each would have complete informa-
tion about optimal routes to all possible destinations. Because each core router knew
routes to all possible destinations, it did not need a default route. If the destination ad-
dress on a datagram was not in a core router’s routing table, the router would generate
an ICMP destination unreachable message and drop the datagram. In essence, the core
design avoided inefficiency by eliminating default routes.

Figure 14.3 depicts the conceptual basis of a core routing architecture. The figure
shows a central core system consisting of one or more core routers, and a set of outly-
ing routers at local sites. Outlying routers keep information about tocal destinations and
use a default route that sends datagrams destined for other sites to the core.

L1
Ln L2
CORE
L SYSTEM Ls
Le L,
Ls

Figure 14.3 The routing architecture of a simplistic core system showing de-
fault routes. Core routers do not use default routes; outlying
routers, labeled L, each have a default route that points to the
core.

Although the simplistic core architecture illustrated in Figure 14.3 is easy to under-
stand, it became impractical for three reasons. First, the Internet outgrew a single, cen-
trally managed long-haul backbone. The topology became complex and the protocols
needed to maintain consistency among core routers became nontrivial. Second, not
every site could have a core router connected to the backbone, so additional routing
structure and protocols were needed. Third, because core routers all interacted to ensure
consistent routing information, the core architecture did not scale to arbitrary size. We
will return to this last problem in Chapter 15 after we examine the protocols that the
core system used to exchange routing information.
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14.6 Beyond The Core Architecture To Peer Backbones

The introduction of the NSFNET backbone into the Internet added new complexity
to the routing structure. From the core systern point of view, the connection to
NSENET was initially no different than the connection to any other site. NSFNET at-
tached to the ARPANET backbone through a single router in Pittsburgh. The core had
explicit routes to all destinations in NSFNET. Routers inside NSFNET knew about lo-
cal destinations and used a default route to send all non-NSENET trattic to the core via
the Pittsburgh router.

As NSFNET grew to become a major part of the Internet. it became apparent that
the core routing architecture would not suffice. The most important conceptual change
occurred when multiple connections were added between the ARPANET and NSENET
backbones. We say that the two became peer backbone nerworks or simply peers. Fig-
ure 14.4 illustrates the resulting peer topology.

HOST 1 ._( ARPANET BACKBONE >_. HOST 2

HOST 3 NSFNET BACKBONE HOST 4

Figure 14.4 An example of peer backbones interconnected through multiple
routers. The diagram illustrates the architecture of the Internet
in 1989. In later generations, parallel backbones were ecach
owned by an ISP,

To understand the difficulties of IP routing among peer backbones, consider routes
from host 3 to host 2 in Figure 14.4. Assume for the moment that the figure shows
geographic orientation, so host 3 is on the West Coast attached to the NSFNET back-
bone while host 2 is on the East Coast attached to the ARPANET backbone. When es-
tablishing routes between hosts 3 and 2, the managers must decide whether to (a) route
the traffic from host 3 through the West Coast router, R/, and then across the AR-
PANET backbone, or (b) route the traffic from host 3 across the NSENET backbone,
through the Midwest router, R2, and then across the ARPANET backbone to host 2, or
(c) route the traffic across the NSFNET backbone, through the East Coast router, R3,
and then to host 2. A more circuitous route is possible as well: traffic could flow from
host 3 through the West Coast router, across the ARPANET backbone to the Midwest
router, back onto the NSFNET backbone to the East Coast router, and finally across the
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ARPANET backbone to host 2. Such a route may or may not be advisable, depending
on the policies for network use and the capacity of various routers and backbones.

For most peer backbone configurations. traffic between a pair of geographically
close hosts should take a shortest path, independent of the routes chosen for cross-
country traffic. For example. traffic from host 3 1o host / should flow through the West
Coast router because it minimizes distance on both backbones.

All these statements sound simple enough. but they are complex to implement for
two reasons. First. although the standard IP routing algorithm uses the network portion
of an IP address to choose a route, optimal routing in a peer backbone architecture re-
quires individual routes for individual hosts. For our example above, the routing table
in host 3 needs different routes for host / and host 2. even though both hosts / and 2 at-
tach to the ARPANET backbone. Second. managers of the two backbones must agree
to keep routes consistent among all routers or routing loops can develop (a routing loop
occurs when routes in a set of routers point in a circle).

It is important to distinguish network topology from routing architecture. It is pos-
sible, for example. to have a single core system that spans multiple backbone networks.
The core machines can be programmed to hide the underlying architectural details and
to compute shortest routes among themselves. It is not possible, however, to partition
the core system into subsets that cach keep partial information without losing func-
tionality. Figure 14.5 illustrates the problem.

default route to sites

beyond core 1 default routes

from sites
behind core 2

default routes
from sites
behind core 1

PARTIAL
CORE #2

PARTIAL
CORE #1

default route to sites
beyond core 2

Figure 14.5 An attempt to partition a core routing architecture into two sets
of routers that keep partial information and use default routes.
Such an architecture results in a routing loop for datagrams that
have an illegal (nonexistent) destination.

As the figure shows, outlying routers have default routes to one side of the parti-
tioned core. Each side of the partition has information about destinations on its side of
the world and a default route for information on the other side of the world. In such an
architecture. any datagram sent to an illegal address will cycle between the two parti-
tions in a routing loop until its time te live counter reaches zero.

We can summarize as follows:
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A core routing architecture assumes a centralized set of routers serves
as the repository of information about all possible destinations in an
internet. Core systems work best for internets that have a single. cen-
trallv managed backbone. Expanding the topology to multiple back-
bones makes routing complex; attempting to partition the core archi-
tecture so that all routers use default routes introduces potential rout-
ing loops.

14.7 Automatic Route Propagation

We said that the original Internet core system avoided default routes because it
propagated complete information about all possible destinations to every core router.
Many corporate internets now use a similar scheme — routers in the corporation run
programs that communicate routing information. The next sections discuss two basic
types of algorithms that compute and propagate routing information. and use the origi-
nal core routing protocol to illustrate one of the algorithms. A later section describes a
protocol that uses the other type of algorithm.

It may seem that automatic route propagation mechanisms are not needed. especial-
ly on small internets. However, internets are not static. Connections fail and are later
replaced. Networks can become overloaded at one moment and underutilized at the
next. The purpose of routing propagation mechanisms is not merely to find a set of
routes, but to continually update the information. Humans simply cannot respond to
changes fast enough; computer programs must be used. Thus. when we think about
route propagation, it is important to consider the dynamic behavior of protocols and al-
gorithms,

14.8 Distance Vector (Bellman-Ford) Routing

The term distance-vectort refers to a class of algorithms routers use to propagate
routing information. The idea behind’ distance-vector algorithms is quite simple. The
router keeps a list of all known routes in a table. When it boots, a router initializes its
routing table to contain an entry for each directly connected network. Each entry in the
table identifies a destination network and gives the distance to that network, usually
measured in hops (which will be defined more precisely later). For example, Figure
14.6 shows the initial contents of the table on a router that attaches to two networks.

+The terms vector-distance. Ford-Fulkerson. Bellman-Ford, and Bellman are synonvmous with distance-
vector: the last two are taken from the names of researchers who published the idea.
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Destination [ Distance \ Route
Net 1 1 0 . direct
Net 2 0 direct

Figure 14.6 An initial distance-vector routing table with an entry for each
directly connected network. Each entry contains the IP address
of a network and an integer distance to that network.

Periodically, each router sends a copy of its routing table to any other router it can
reach directly. When a report arrives at router K from router J, K examines the set of
destinations reported and the distance to each. If J knows a shorter way to reach a des-
tination. or if J lists a destination that K does not have in its table, or if K currently
routes to a destination through J and J’s distance to that destination changes, K replaces
its table entry. For example, Figure 14.7 shows an existing table in a router, K, and an
update message from another router, J.

Destination | Distance Route Destination | Distance
Net 1 0 direct Net 1 2
Net 2 0 direct — Net4 3
Net 4 8 Router L Net 17 6
Net 17 5 Router M —» Net 21 4
Net 24 6 Router J Net 24 5
Net 30 2 Router Q Net 30 10
Net 42 2 Router J — Net 42 3

(a) (b)

Figure 14.7 (a) An existing route table for a router K, and (b) an incoming
routing update message from router J. The marked entries will
be used to update existing entries or add new entries to K's
table.

Note that if J reports distance N, an updated entry in K will have distance N+ (the
distance to reach the destination from J plus the distance to reach J). Of course, the
routing table entries contain a third column that specifies a next hop. The next hop en-
try in each initial route is marked direct delivery. When router K adds or updates an en-
try in response to a message from router J, it assigns router J as the next hop for that
entry.

The term distance-vector comes from the information sent in the periodic mes-
sages. A message contains a list of pairs (V, D), where V identifies a destination
(called the vector), and D is the distance to that destination. Note that distance-vector
algorithms report routes in the first person (i.e., we think of a router advertising, ‘‘I can
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reach destination V at distance D). In such a design, all routers must participate in the
distance-vector exchange for the routes to be efficient and consistent.

Although distance-vector algorithms are casy to implement. they have disadvan-
tages. In a completely static environment. distance-vector algorithms propagate routes
to all destinations.  When routes change rapidly. however. the computations may not
stabilize. When a route changes (i.e, a new connection appears or an old one fails). the
information propagates slowly from one router to another. Meanwhile. some routers
may have incorrect routing information.

For now, we will examine a simple protocol that uses the distance-vector algorithm
without discussing all the shortcomings. Chapter 16 completes the discussion by show-
ing another distance-vector protocol, the problems that can arise, and the heuristics used
to solve the most serious of them.

14.9 Gateway-To-Gateway Protocol (GGP)

The original core routers used a distance-vector protocol known as the Gateway-
to-Gateway Protocol* (GGP) to exchange routing information.  Although GGP only
handled classful routes and is no longer part of the TCP/IP standardsz, it does provide a
concrete example of distance-vector routing. GGP was designed to travel in IP da-
tagrams similar to UDP datagrams or TCP segments. Each GGP message has a fixed
format header that identifies the message type and the format of the remaining fields.
Because only core routers participated in GGP, and because core routers were controlled
by a central authority, other routers could not interfere with the exchange.

The original core system was arranged to permit new core routers to be added
without modifying existing routers. When a new router was added to the core system.
It was assigned one or more core neighbors with which it communicated. The neigh-
bors. members of the core, already propagated routing information among themselves.
Thus. the new router only needed to inform its neighbors about networks it could reach;
they updated their routing tables and propagated this new information turther.

GGP is a true distance-vector protocol. The information routers exchange with
GGP consists of a set of pairs, (N, Dj, where N is an IP network address, and D is a
distance measured in hops. We say that a router using GGP advertises the networks it
can reach and its cost for reaching them.

GGP measures distance in router hops, where a router is defined to be zero hops
from directly connected networks. one hop from networks that are reachable through
one other router, and so on. Thus. the number of hops or the hop count along a path
from a given source to a given destination refers to the number of routers that a da-
tagram encounters along that path. It should be obvious that using hop counts to calcu-
late shortest paths does not always produce desirable results. For example, a path with
hop count 3 that crosses three LANs may be substantially faster than a path with hop
count 2 that crosses two slow speed serial lines. Many routers use artificially high hop
counts for routes across slow networks.

“Recull that although vendors adopted the term /P router. scientists originally used the term IP gateway.
iThe IETF has declared GGP historic, which means that it is no longer recommended for use with
TCP/IP.
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14.10 Distance Factoring

Like most routing protocols, GGP uses multiple message rypes. each with its own
format and purpose. A field in the message header contains a code that identifies the
specific message type; a receiver uses the code to decide how to process the message.
For example, before two routers can exchange routing information, they must establish
communication, and some message types are used for that purpose. The most funda-
mental message type in GGP is also fundamental to any distance-vector protocol: a
routing update which is used to exchange routing information.

Conceptually, a routing update contains a list of pairs, where each entry contains
an IP network address and the distance to that network. In practice. however. many
routing protocols rearrange the information to keep messages small. In particular, ob-
serve that few architectures consist of a linear arrangement of networks and routers. In-
stead. most are hierarchical. with multiple routers attached to each network. Conse-
quently. most distance values in an update are small numbers. and the same values tend
to be repeated frequently. To reduce message size. routing protocols often use a tech-
nique that was pioneered in GGP. Known as distance factoring. the technique avoids
sending copies of the same distance number. Instead. the list of pairs is sorted by dis-
tance, each distance value is represented once, and the networks reachable at that dis-
tance follow. The next chapter shows how other routing protocols factor information.

14.11 Reliability And Routing Protocols

Most-routing protocols use connectionless transport. For example. GGP encapsu-
lates messages directly in 1P datagrams: modern routirg protocols usually encapsulate in
UDP+. Both IP and UDP offer the same semantics: messages can be lost. delayed. du-
plicated, corrupted. or delivered out of order. Thus, a routing protocol that uses them
must compensate for failures.

Routing protocols use several techniques to handle delivery problems. Checksums
are used to handle corruption. Loss is either handled by soft statet or through ack-
nowledgement and retransmission. For example, GGP uses an extended acknowledge-
ment scheme in which a receiver can return either a positive or negative acknowledge-
ment.

To handle delivery out of order and the corresponding reply that occurs when an
old message arrives, routing protocols often used sequence numbers. In GGP. for ex-
ample, each side chooses an initial number to use for sequencing when communication
begins. The other side must then acknowledge the sequence number. After the initial
exchange, each message contains the next number in the sequence. which allows the re-
ceiver to know whether the message arrived in order. In a later chapter, we will see an
example of a routing protocol that uses soft state information.

There are exceptions — the next chapter discusses a protocol that uses TCP.
fRecall that soft state relies on timeouts to remove old information rather than waiting for a message
from the source.
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14.12 Link-State (SPF) Routing

The main disadvantage of the distance-vector algorithm is that it does not scale
well. Besides the problem of slow response to change mentioned carlier. the algorithm
requires the exchange of large messages. Because each routing update contains an entry
for every possible network, message size is proportional to the total number of networks
in an internet. Furthermore, because a distance-vector protocol requires every router to
participate, the volume of information exchanged can be enormous.

The primary alternative to distance-vector algorithms is a class of algorithms
known as link state. link status, or Shortest Path Firstt (SPF). The SPF algorithm re-
quires each participating router to have complete topology information. The easiest
way to think of the topology information is to imagine that every router has a map that
shows all other routers and the networks to which they connect. In abstract terms, the
routers correspond to nodes in a graph and networks that connect routers correspond to
edges. There is an edge (link) between two nodes it and only if the corresponding
routers can communicate directly.

Instead of sending messages that contain lists of destinations, a router participating
in an SPF algorithm performs two tasks. First. it actively tests the status of all neighbor
routers. In terms of the graph. two routers are neighbors if they share a link; in network
terms. two neighbors connect to a common network. Second, it periodically propagates
the link status information to all other routers.

To test the status of a directly connected neighbor, a router periodically exchanges
short messages that ask whether the neighbor is alive and reachable. If the neighbor re-
plies, the link between them is said to be up. Otherwise, the link is said to be downi.
To inform all other routers. each router periodically broadcasts a message that lists the
status (state) of each of its links. A status message does not specify routes — it simply
reports whether communication is possible between pairs of routers. Protocol software
in the routers arranges to deliver a copy of each link status message to all participating
routers (if the underlying networks do not support broadcast, delivery is done by for-
warding individual copies of the message point-to-point).

Whenever a link status message arrives. a router uses the information to update its
map of the internet, by marking links up or down. Whenever link status changes, the
router recomputes routes by applying the well-known Dijkstra shortest path algorithm
to the resulting graph. Dijkstra’s algorithm computes the shortest paths to all destina-
tions from a single source.

One of the chief advantages of SPF algorithms is that each router computes routes
independently using the same original status data; they do not depend on the computa-
tion of intermediate machines. Because link status messages propagate unchanged, it is
easy to debug problems. Because routers perform the route computation jocally, it is
guaranteed to converge. Finally. because link status messages only carry information
about the direct connections from a single router, the size does not depend on the
number of networks in the internet. Thus, SPF algorithms scale better than distance-
vector algorithms.

+The name *shortest path first’" is a misnomer because all routing algorithms seek shortest paths.

iln practice, to prevent oscillations between the up and down states, most protocols use a k-out-of-n rule
to test liveness, meaning that the link remains up until a significant percentage of requests have no reply, and
then it remains down unti} a significant percentage of messages receive a reply.
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14.13 Summary

To ensure that all networks remain reachable with high reliability, an internet must
provide globally consistent routing. Hosts and most routers contain only partial routing
information: they depend on default routes to send datagrams to distant destinations.
Originally. the global Internet solved the routing problem by using a core router archi-
tecture in which a set of core routers each contained complete information about all net-
works. Routers in the original Internet core system exchanged routing information
periodically, meaning that once a single core router learned about a route. all core
routers learned about it. To prevent routing loops. core routers were forbidden from us-
ing detault routes.

A single, centrally managed core system works well for an internet architecture
built on a single backbone network. However. a core architecture does not suffice for
an internet that consists of a set of separately managed peer backbones that interconnect
at multiple places.

When routers exchange routing information they use one of two basic algorithms,
distance-vector or SPF. A distance-vector protocol, GGP, was originally used to pro-
pagate routing update information throughout the Internet core.

The chief disadvantage of distance-vector algorithms is that they perform a distri-
buted shortest path computation that may not converge if the status of network connec-
tions changes continually. Another disadvantage is that routing update messages grow
Jarge as the number of networks increases.

The use of SPF routing predates the Internet. One of the earliest examples of an
SPF protocol comes from the ARPANET. which used a routing protocol internally to
establish and maintain routes among packet switches. The ARPANET algorithm was
used for a decade.

FOR FURTHER STUDY

The definition of the core router system and GGP protocol in this chapter comes
from Hinden and Sheltzer [REC 823]. Braden and Postel {RFC 1812] contains further
specifications for Internet routers. Almquist [RFC 1716] summarizes later discussions.
Braun [RFC 1093] and Rekhter [RFC 1092] discuss routing in the NSFNET backbone.
Clark [RFC 1102} and Braun [RFC 1104] both discuss policy-based routing. The next
two chapters present protocols used for propagating routing information between
separate sites and within a single site.
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EXERCISES

14.1

14.2

14.3

14.4

14.5

14.6

14.7

14.8

14.9

14.10

Suppose a router discovers it is about to route an I[P datagram back over the same net-
work interface on which the datagram arrived. What should it do? Why?

After rcading RFC 823 and RFC 1812, explain what an Internet core router (i.c.. one
with complete routing information) should do in the situation described in the previous
question.

How can routers in a core system use default routes o send all illegal datagrams to a
specific machine?

Imagine students experimenting with a router that attaches a local area network to an in-
ternet that has a core routing system. The students want to advertise their network 10 a
core router. but if they accidentally advertise zero length routes to arbitrary networks.
traffic from the internet will be diverted to their router incorrectly. How can a core pro-
tect itsell” from illegal data while still accepting updates from such “untrusted™” routers?
Which ICMP messages does a router generate?

Assume a router is using unreliable transport for delivery. How can the router determine
whether u designated neighbor is “*up™ or “*down™? (Hint: consult RFC 823 10 find out
how the original core system solved the problem.)

Suppose two routers each advertise the same cost. k. to reach a given network, N.
Describe the circumstances under which routing through one of them may take fewer to-
tal hops than routing through the other one.

How does a router know whether an incoming datagram carries a GGP message?  An
OSPF message?

Consider the distance- vector update shown in Figure 14.7 carefullv. For cach item up-
dated in the table, give the recson why the router will perform the update.

Consider the use of sequence numbers o ensure that two routers do not become con-
fused when datagrams are duplicated. delayed. or delivered out of order. How should
initial sequence numbers be sclected? Why?
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Routing: Exterior Gateway
Protocols And Autonomous
Systems (BGP)

15.1 Introduction

The previous chapter introduces the idea of route propagation and examines one
protocol routers use to exchange routing information. This chapter extends our under-
standing of internet routing architectures. It discusses the concept of autonomous sys-
tems. and shows a protocol that a group of networks and routers operating under one
administrative authority uses to propagate routing information about its networks to oth-
er groups.

15.2 Adding Complexity To The Architectural Model

The original core routing system evolved at a time when the Internet had a single
wide area backbone as the previous chapter describes. Consequently, part of the
motivation for a core architecture was to provide connections between a network at each
site and the backbone. If an internet consists of only a single backbone plus a set of at-
tached local area networks, the core approach propagates all necessary routing informa-
tion correctly. Because all routers attach to the wide area backbone network, they can
exchange all necessary routing information directly. Each router knows the single local
network to which it attaches, and propagates that information to the other routers. Each
router learns about other destination networks from other routers.

269
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It may seem that it would be possible to extend the core architecture to an arbitrary
size internet merely by adding more sites, each with a router connecting to the back-
bone. Unfortunately, the scheme does not scale — having all routers participate in a
single routing protocol only suffices for trivial size internets. There are three reasons.
First. even if each site consists of a single network, the scheme cannot accommodate an
arbitrary number of sites because each additional router generates routing traffic. Ifa
large set of routers attempt to communicate, the total bandwidth becomes overwhelm-
ing. Second, the scheme cannot accommodate multiple routers and networks at a given
site because only those routers that connect directly to the backbone network can com-
municate directly. Third, in a large internet, the networks and routers are not all
managed by a single entity, nor are shortest paths always used. Instead, because net-
works are owned and managed by independent groups, the groups may choose policies
that differ. A routing architecture must provide a way for each group to independently
control routing and access.

The consequences of limiting router interaction are significant. The idea provides
the motivation for much of the routing architecture used in the global Internet. and ex-
plains some of the mechanisms we will study. To summarize this important principle:

Although it is desirable for routers to exchange routing information. it
is impractical for all rowters in an arbitrarily large internet to partici-
pate in a single routing update protocol.

15.3 Determining A Practical Limit On Group Size

The above statement leaves many questions open. For example, what size internet
is considered ‘‘large’’? If only a limited set of routers can participate in an exchange of
routing information, what happens to routers that are excluded? Do they tunction
correctly? Can a router that is not participating ever forward a datagram to a router that
is participating? Can a participating router forward a datagram to a non-participating
router?

The answer to the question of size involves understanding the algorithm being used
and the capacity of the network that connects the routers as well as the details of the
routing protocol. There are two issues: delay and overhead. Delay is easy to under-
stand. For example, consider the maximum delay until all routers are informed about a
change when they use a distance-vector protocol. Each router must receive the new in-
formation, update its routing table, and then forward the information to its neighbors.
In an internet with N routers arranged in a linear topology, N steps are required. Thus,
N must be limited to guarantee rapid distribution of information.

The issue of overhead is also easy to understand. Because each router that partici-
pates in a routing protocol must send messages. a larger set of participating routers
means more routing traffic. Furthermore, if routing messages contain a list of possible
destinations, the size of each message grows as the number of routers and networks in-
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crease. To ensure that routing traffic remains a small percentage of the total traffic on
the underlying networks, the size of routing messages must be limited.

In fact, most network managers do not have sufficient infoermation required to per-
form detailed analysis of the delay or overhead. Instead, they follow a simple heuristic
guideline:

It is safe to allow up to a dozen routers to participate in a single rout-
ing information protocol across a wide area network; approximately
five times as many can safely participate across a set of local area
networks.

Of course, the rule only gives general advice and there are many exceptions. For
example, if the underlying networks have especially low delay and high capacity, the
number of participating routers can be larger. Similarly. if the underlying networks
have unusually low capacity or a high amount of traffic, the number of participating
routers must be smaller to avoid overloading the networks with routing traffic.

Because an internet is not static. it can be difficult to estimate how much tratfic
routing protocols will generate or what percentage of the underlying bandwidth the rout-
ing traffic will consume. For example, as the number of hosts on a network grows over
time, increases in the traffic generated consume more of the network capacity. In addi-
tion, increased traffic can arise from new applications. Therefore, network managers
cannot rely solely on the guideline above when choosing a routing architecture. Instead,
they usually implement a rraffic monitoring scheme. In essence. a traffic monitor
listens passively to a network and records statistics about the traffic. In particular, a
monitor can compute both the network utilization (i.e., percentage of the underlying
bandwidth being used) and the percentage of packets carrying routing protocol mes-
sages. A manager can observe traffic trends by taking measurements over long periods
(e.g., weeks or months), and can use the output to determine whether too many routers
are participating in a single routing protocol.

15.4 A Fundamental Idea: Extra Hops

Although the number of routers that participate in a single routing protocol must be
limited, doing so has an important consequence because it means that some routers will
be outside the group. It might seem that an “‘outsider’” could merely make a member
of the group a default. In the early Internet, the core system did indeed function as a
central routing mechanism to which noncore routers, sent datagrams for delivery. How-
ever, researchers learned an important lesson: if a router outside of a group uses a
member of the group as a default route, routing will be suboptimal. More important,
one does not need a large number of routers or a wide area network — the problem can
occur whenever a nonparticipating router uses a participating router for delivery. To sec
why, consider the example in Figure 15.1.
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participating participating
router router
nonparticipating
router

Figure 15.1 An architecture that car cause the extra hop problem. Nonop-
timal routing occurs when a nonparticipating router connected to

the backbone has a defuault route to a participating router.

In the figure, routers R, and R, connect to local arca networks /7 and 2. respective-
ly. Because they participate in a routing protocol. they both know how to reach both
networks.  Suppose nonparticipating router R, chooses one of the participating routers,
say R,. as a default. That is. R, sends R, all datagrams destined for networks to which it
has no direct connection.  In particular. R, sends datagrams destined for network 2
across the backbone to its chosen participating router, R,. which must then forward
them back across the backbone to router R, The optimal route. of course, requires R,
to transmit datagrams destined for network 2 directly to R, Notice that the choice of
participating router makes no ditterence. Only destinations that lic beyond the chosen
router have optimal routes; all paths that go through other backbone routers require the
datagram to make a second. unnecessary trip across the backbone network.  Also notice
that the participating routers cannot use ICMP redirect messages to inform R, that it has
nonoptimal routes because ICMP redirect messages can only be sent to the original
source and not to intermediate routers.

We call the routing anomaly illustrated in Figure 15.1 the extra hop problem. The
problem is insidious because everything appears to work correctly — datagrams do
reach their destination. However. because routing is not optimal, the system is extreme-
ly mefficient. Each datagram that takes an extra hop consumes resources on the inter-
mediate router as well as twice as much backbone bandwidth as it should. Solving the
problem requires us to change our view of architecture:

Treating a group of routers that participate in a routing update proto-
col as a default delivery svstem can introduce an extra hop for da-
tagram traffic; a mechanism is needed riat allows nonparticipating
routers to learn routes from participating routers so they can choose
optimal routes.
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15.5 Hidden Networks

Before we examine mechanisms that allow a router outside a group to learn routes,
we need to understand another aspect of routing: hidden networks (i.e. networks that are
concealed from the view of routers in a group). Figure 15.2 shows an example that will
illustrate the concept.

participating
router

Local Net 1

Local Net 2 Local Net 3

Local Net 4

Figure 15.2 An example of multiple networks and routers with a single back-
bone connection. A mechanism is needed to pass reachability
information about additional local networks into the core system.

In the figure, a site has multiple local area networks with multiple routers connect-
ing them. Suppose the site has just installed local network 4 and has obtained an Inter-
net address for it (for now, imagine that the site obtained the address from another ISP).
Also assume that the routers R,, R;, and R, each have correct routes for all four of the
site’s local networks as well as a default route that passes other traffic to the ISP’s
router, R,. Hosts directly attached to local network 4 can communicate with one anoth-
er, and any computer on that network can route packets out to other Internet sites.
However, because router R, attaches only to local network /, it does not know about lo-
cal network 4. We say that, from the viewpoint of the ISP’s routing system, local net-
work 4 is hidden behind local network /. The important point is:

Because an individual organization can have an arbitrarily complex
set of networks interconnected by routers, no router from another or-
ganization can attach directly to all networks. A mechanism is need-
ed that allows nonparticipating routers to inform the other group
about hidden networks.
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We now understand a fundamental aspect of routing: information must flow in two
directions. Routing information must flow from a group of participating routers to a
nonparticipating router, and a nonparticipating router must pass information about hid-
den networks to the group. Ideally, a single mechanism should solve both problems.
Building such a mechanism can be tricky. The subtle issues are responsibility and ca-
pability. Exactly where does responsibility for informing the group reside? If we de-
cide that one of the nonparticipating routers should inform the group, which one is ca-
pable of doing it? Look again at the example. Router R, is the router most closely as-
sociated with local network 4. but it lies 2 hops away from the nearest core router.
Thus, R, must depend on router R, to route packets to network 4. The point is that R,
knows about local network 4 but cannot pass datagrams directly from R,. Router R, lies
one hop from the core and can guarantee to pass packets, but it does not directly attach
to local network 4. So, it seems incorrect to grant R, responsibility for advertising net-
work 4. Solving this dilemma will require us to introduce a new concept. The next
sections discuss the concept and a protocol that implements it.

15.6 Autonomous System Concept

The puzzle over which router should communicate information to the group arises
because we have only considered the mechanics of an internet routing architecture and
not the administrative issues. Interconnections, like those in the example of Figure
15.2, that arise because an internet has a complex structure, should not be thought of as
multiple independent networks connected to an internet. Instead. the architecture should
be thought of as a single organization that has multiple networks under its control. Be-
cause the networks and routers fall under a single administrative authority, that authori-
ty can guarantee that internal routes remain consistent and viable. Furthermore, the ad-
ministrative authority can choose one of its routers to serve as the machine that will ap-
prise the outside world of networks within the organization. In the example from Fig-
ure 15.2, because routers R.. R,. and R, fall under control of one administrative authori-
ty. that authority can arrange to have R, advertise networks 2. 3. and 4 (R, already
knows about network / because it has a direct connection to it).

For purposes of routing, a group of networks and routers controlled by a single ad-
ministrative authority is called an autonomous svstem (AS). Routers within an auto-
nomous system are free to choose their own mechanisms for discovering, propagating,
validating, and checking the consistency of routes. Note that, under this definition, the
original Internet core routers formed an autonomous system. Each change in routing
nrotocols within the core autonomous system was made without affecting the routers in
other autonomous systems. In the previous chapter, we said that the original Internet
core system used GGP to communicate, and a later generation used SPREAD. Eventu-
ally, ISPs evolved their own backbone networks that use more recent protocols. The
next chapter reviews some of the protocols that autonomous systems use internally to
propagate routing information.
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15.7 From A Core To Independent Autonomous Systems

Conceptually, the autonomous system idea was a straightforward and natural gen-
eralization of the original Internet architecture, depicted by Figure 15.2, with auto-
nomous systems replacing local area networks. Figure 15.3 illustrates the idea.

< ; Backbone Network

Autonomous
System n

Autonomous Autonomous
System 1 System 2

Figure 15.3 Architecture of an internet with autonomous systems at backbone
sites. Each autonomous system consists of multiple networks
and routers under a single administrative authority.

To make networks that are hidden inside autonomous systems reachable
throughout the Internet, each autonomous system must advertise its networks to other
autonomous systems. An advertisement can be sent to any autonomous system. In a
centralized, core architecture, however, it is crucial that each autonomous system pro-
pagate information to one of the routers in the core autonomous system.

It may seem that our definition of an autonomous system is vague, but in practice
the boundaries between autonomous systems must be precise to allow automated algo-
rithms to make routing decisions. For example, an autonomous system owned by a cor-
poration may choose not to route packets through an autonomous system owned by
another even though they connect directly. To make it possible for automated routing
algorithms to distinguish among autonomous systems, each is assigned an autonomous
system number by the central authority that is charged with assigning all Internet net-
work addresses. When routers in two autonomous systems exchange routing informa-
tion, the protocol arranges for messages to carry the autonomous system number of the
system each router represents.

We can summarize the ideas:

A large TCP/IP internet has additional structure to accommodate ad-
ministrative boundaries: each collection of networks and routers
managed by one administrative authority is considered to be a single
autonomous system that is free to choose an internal routing architec-
ture and protocols.
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We said that an autonomous system needs to collect information about all its net-
works and designate one or more routers to pass the information to other autonomous
systems. The next sections presents the details of a protocol routers use to advertise
network reachability. Later sections return to architectural questions to discuss an im-
portant restriction the autonomous system architecture imposes on routing.

15.8 An Exterior Gateway Protocol

Computer scientists use the term Exterior Gateway Protocol (EGP)7 to denote any
protocol used to pass routing information between two autonomous systems. Currently
a single exterior protocol is used in most TCP/IP internets. Known as the Border Gate-
way Protocol (BGP), it has evolved through four (quite different) versions. Each ver-
sion is numbered, which gives rise to the formal name of the current version: BGP-4.
Throughout this text, the term BGP will refer to BGP-4.

When a pair of autonomous systems agree to exchange routing information, each
must designate a routerf that will speak BGP on its behalf; the two routers are said to
become BGP peers of one another. Because a router speaking BGP must communicate
with a peer in another autonomous system, it makes sense to select a machine that is
near the ‘‘edge’ of the autonomous system. Hence, BGP terminology calls the
machine a border gateway or border router. Figure 15.4 illustrates the idea.

Autonomous Autonomous

System 1 System 2

Figure 15.4 Conceptual illustration of two routers, R, and R,, using BGP to
advertise networks in their autonomous systems after collecting
the information from other routers internally. An organization
using BGP usually chooses a router that is close to the outer
‘‘edge’” of the autonomous system.

In the figure, router R, gathers information about networks in autonomous system /
and reports that information to router R, using BGP, while router R, reports information
from autonomous system 2.

tOriginally, the term EGP referred to a specific protocol that was used for communication with the Inter-
net core; the name was coined when the term gateway was used irstead of router.

tAlthough the protocol allows an arbitrary computer to be used, most autonomous systems run BGP on a
router; all the examples in this text will assume BGP is running on a router.
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15.9 BGP Characteristics

BGP is unusual in several ways. Most important, BGP is neither a pure distance-
vector protocol nor a pure link state protocol. It can be characterized by the following:

Inter-Autonomous System Communication. Because BGP is designed as an exteri-
or gateway protocol, its primary role is to allow one autonomous system to communi-
cate with another.

Coordination Among Multiple BGP Speakers. If an autonomous system has multi-
ple routers each communicating with a peer in an outside autonomous system, BGP can
be used to coordinate among routers in the set to guarantee that they all propagate con-
sistent information.

Propagation Of Reachability Information. BGP allows an autonomous system to
advertise destinations that are reachable either in or through it, and to learn such infor-
mation from another autonomous system.

Next-Hop Paradigm. Like distance-vector routing protocols, BGP supplies next
hop information for each destination.

Policy Support. Unlike most distance-vector protocols that advertise exactly the
routes in the local routing table, BGP can implement policies that the local administra-
tor chooses In particular, a router running BGP can be configured to distinguish
heiween the set of destinations reachable by computers inside its autonomous system
and the .ct of a. “inations advertised to other autonomous systems.

Reliable Transport. BGP is unusual among protocols that pass routing information
because it assumes reliable transport. Thus, BGP uses TCP for all communication.

Path Information. In addition to specifying destinations that can be reached and a
next hop for each, BGP advertisements include path information that allows a receiver
‘to learn a series of autonomous systems along a path to the destination.

Incremental Updates. To conserve network bandwidth, BGP does not pass full in-
formation in each update message. Instead, full information is exchanged once, and
then successive messages carry incremental changes called deltas.

Support For Classless Addressing. BGP supports CIDR addresses. That is, rather
than expecting addresses to be self-identifying, the protocol provides a way to send a
mask along with each address.

Route Aggregation. BGP conserves network bandwidth by allowing a sender to
aggregate route information and send a single entry to represent multiple, related desti-
nations.

Authentication. BGP allows a receiver to authenticate messages (i.e., verify the
identity of a sender).
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15.10 BGP Functionality And Message Types

BGP peers perform three basic functions. The first function consists of initial peer
acquisition and authentication. The two peers establish a TCP connection and perform
a message exchange that guarantees both sides have agreed to communicate. The
second function forms the primary focus of the protocol — each side sends positive or
negative reachability information. That is. a sender can advertise that one or more des-
tinations are reachable by giving a next hop for each. or the sender can declare that one
or more previously advertised destinations are no longer reachable. The third function
provides ongoing verification that the peers and the network connections between them
are functioning correctly.

To handle the three functions described above, BGP defines four basic message
types. Figure 15.5 contains a summary.

Type Code Message Type Description
1 OPEN Initialize communication
2 UPDATE Advertise or withdraw routes
3 NOTIFICATION Response to an incorrect message
4 KEEPALIVE Actively test peer connectivity

Figure 15.5 The four basic message types in BGP-4.

15.11 BGP Message Header

Each BGP message begins with a fixed header that identifies the message type.
Figure 15.6 illustrates the header format.

— MARKER -

LENGTH TYPE

Figure 15.6 The format of the header that precedes every BGP message.

The 16-octet MARKER field contains a value that both sides agree to use to mark
the beginning of a message. The 2-octet LENGTH field specifies the total message
length measured in octets. The minimum message size is /9 octets (for a message type
that has no data following the header), and the maximum allowable length is 4096 oc-



Sec. 15.11 BGP Message Header 279

tets. Finally, the l-octet TYPE field contains one of the four values for the message
type listed in Figure 15.5.

The MARKER may seem unusual. In the initial message, the marker consists of all
Is: if the peers agree to use an authentication mechanism, the marker can contain au-
thentication information. In any case. both sides must agree on the value so it can be
used for svachronization. To understand why synchronization is necessary, recall that
all BGP messages are exchanged across a stream transport (i.e., TCP), which does not
identify the boundary between one message and the next. In such an environment, a
simple error on either side can have dramatic consequences. In particular, if either the
sender or receiver miscounts the octets in a message, a sviachronization error will occur.
More important, because the transport protocol does not specify message boundaries,
the transport protocol will not alert the receiver to the error. Thus, to ensure that the
sender and receiver remain synchronized, BGP places a well-known sequence at the be-
ginning of each message, and requires a receiver to verify that the value is intact before
processing the message.

15.12 BGP OPEN Message

As soon as two BGP peers establish a TCP connection, they each send an OPEN
message to declare their autonomous system number and establish other operating
parameters. In addition to the standard header, an OPEN message contains a value for a
hold timer that is used to specify the maximum number of seconds which may elapse
between the receipt of two successive messages. Figure 15.7 illustrates the format.

0 8 16 31
VERSION
AUTONOMOUS SYSTEMS NUM
HOLD TIME
BGP IDENTIFIER |
PARM. LEN
Optional Parameters (variable)

Figure 15.7 The format of the BGP OPEN message that is sent at startup.
These octets follow the standard message header.

Most fields are straightforward. The VERSION field identifies the protocol version
used (this format is for version 4). Recall that each autonomous system is assigned a
unique number. Field AUTONOMOUS SYSTEMS NUM gives the autonomous system
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number of the sender’s system. The HOLD TIME field specifies a maximum time that
the receiver should wait for a message from the sender. The receiver is required to im-
plement a timer using this value. The timer is reset each time a message arrives; if the
timer expires, the receiver assumes the sender is no longer available (and stops forward-
ing datagrams along routes learned from the sender).

Field BGP IDENTIFIER contains a 32-bit integer value that uniquely identifies the
sender. If a machine has multiple peers (e.g., perhaps in multiple autonomous systems),
the machine must use the same identifier in all communication. The protocol specifies
that the identifier is an IP address. Thus, a router must choose one of its IP addresses
to use with all BGP peers.

The last field of an OPEN message is optional. If present, field PARM. LEN speci-
fies the length measured in octets, and the field labeled Optional Parameters contains a
list of parameters. It has been labeled variable to indicate that the size varies from mes-
sage to message. When parameters are present, each parameter in the list is preceded
by a 2-octet header, with the first octet specifying the type of the parameter, and the
second octet specifying the length. If there are no parameters, the value of PARM. LEN
is zero and the message ends with no further data.

Only one parameter type is defined in the original standard: type / is reserved for
authentication. The authentication parameter begins with a header that identifies the
type of authentication followed by data appropriate for the type. The motivation for
making authentication a parameter arises from a desire to allow BGP peers to choose an
authentication mechanism without making the choice part of the BGP standard.

When it accepts an incoming OPEN message, a machine speaking BGP responds
by sending a KEEPALIVE message (discussed below). Each side must send an OPEN
and receive a KEEPALIVE message before they can exchange routing information.
Thus, a KEEPALIVE message functions as the acknowledgement for an OPEN.

15.13 BGP UPDATE Message

Once BGP peers have created a TCP connection, sent OPEN messages, and ack-
nowledged them, the peers use UPDATE messages to advertise new destinations that
are reachable or to withdraw previous advertisements when a destination has become
unreachable. Figure 15.8 illustrates the format of UPDATE messages.

As the figure shows, each UPDATE message is divided into two parts: the first
lists previously advertised destinations that are being withdrawn, and the second speci-
fies new destinations being advertised. As usual, fields labeled variable do not have a
fixed size; if the information is not needed for a particular UPDATE, the field can be
omitted from the message. Field WITHDRAWN LEN is a 2-octet field that specifies the
size of the Withdrawn Destinations field that follows. If no destinations are being with-
drawn, WITHDRAWN LEN contains zero. Similarly, the PATH LEN field specifies the
size of the Path Attributes that are associated with new destinations being advertised. If
there are no new destinations, the PATH LEN field contains zero.
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WITHDRAWN LEN

Withdrawn Destinations (variable)

PATH LEN

Path Attributes (variable)

Destination Networks (variable)

Figure 15.8 BGP UPDATE message format in which variable size areas of
the message may be omitted. These octets follow the standard
message header.

15.14 Compressed Mask-Address Pairs

Both the Withdrawn Destinations and the Destination Networks fields contain a list
of IP network addresses. To accommodate classless addressing, BGP must send an ad-
dress mask with each IP address. Instead of sending an address and a mask as separate
32-bit quantities, however, BGP uses a compressed representation to reduce message
size. Figure 15.9 illustrates the format:

LEN

IP Address (1-4 octets) |

Figure 15.9 The compressed format BGP uses to store a destination address
and the associated mask.

The figure shows that BGP does not actually send a bit mask. Instead, it encodes
information about the mask into a single octet that precedes each address. The mask
octet contains a binary integer that specifies the number of bits in the mask (mask bits
are assumed to be contiguous). The address that follows the mask octet is also
compressed — only those octets covered by the mask are included. Thus, only one ad-
dress octet follows a mask value of 8 or less, two follow a mask value of 9 to 16, three
follow a mask value of 17 to 24, and four follow a mask value of 25 to 32. Interesting-
ly, the standard also allows a mask octet to contain zero (in which case no address oc-
tets follow it). A zero length is useful because it corresponds to a default route.
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15.15 BGP Path Attributes

We said that BGP is not a pure distance-vector protocol because it advertises more
than a next hop. The additional information is contained in the Path Attributes ficld of
an update message. A sender can use the path attributes to specify: a next hop for the
advertised destinations. a list of autonomous systems along the path to the destinations,
and whether the path information was learned from another autonomous system or
derived from within the sender’s autonomous system.

It is important to note that the path attributes are factored to reduce the size of the
UPDATE message. meaning that the attributes apply to all destinations advertised in the
message. Thus, if different attributes apply to some destinations, they must be adver-
tised in a separate UPDATE message.

Path attributes are important in BGP for three reasons. First, path information al-
lows a receiver to check for routing loops. The sender can specify an exact path
through ali autonomous systems to the destination. If any autonomous system appears
more than once on the list, there must be a routing loop. Second. path information al-
lows a receiver to implement policy constraints. For example, a receiver can examine
paths to verify that they do not pass through untrusted autonomous systems (e.g.. a
competitor’s autonomous system). Third. path information allows a receiver to know
the source of all routes. In addition to allowing a sender to specify whether the infor-
mation came from inside its autonomous system or from another system, the path attri-
butes allow the sender to declare whether the information was collected with an exterior
gateway protocol such as BGP or an interior gateway protocolt. Thus, each receiver
can decide whether to accept or reject routes that originate in autonomous systems
beyond the peer’s.

Conceptually. the Path Anributes field contains a list of items. where each item
consists of a triple:

(rvpe, length, value)
Instead of fixed-size fields, the designers chose a flexible encoding scheme that minim-

izes the space each item occupies. As specified in Figure 15.10, the type information
always requires two octets. but other fields vary in size.

“The next chapter deseribes interior zateway protocols.



Sec. 15.15 BGP Path Attributes 283

012345678 15
| Flag Bits Type Code |

Flag Bits Description

0 for required attribute, 1 if optional
1 for transitive, 0 for nontransitive
0 for complete, 1 for partial

0 if length field is one octet; 1 if two
5-7 unused (must be zero)

WN—=O

Figure 15.10 Bits of the 2-octet type ticld that appears betore cach BGP attri-
bute path item and the meaning of each.

For cach item in the Path Attributes list, a length field follows the 2-octet type
field, and may be either one or two octets long. As the figure shows, tlag bit 3 speci-
fies the size of the length field. A receiver uses the type ficld to determine the size of
the length field, and then uses the contents of the length field to determine the size of
the value field.

Each item in the Path attributes field can have one of seven possible type codes.
Figure 15.11 summarizes the possibilities.

Type Code Meaning

Specify origin of the path information

List of autonomous systems on path to destination
Next hop to use for destination

Discriminator used for muitiple AS exit points
Preference used within an autonomous system
Indication that routes have been aggregated

ID of autonomous system that aggregated routes

NooahsRWN =

Figure 15.11 The BGP attribute type codes and the meaning of each.

15.16 BGP KEEPALIVE Message

Two BGP peers periodically exchange KEEPALIVE messages to test network con-
nectivity and to verify that both peers continue to function. A KEEPALIVE message
consists of the standard message header with no additional data. Thus, the total mes-
sage size is 19 octets (the minimum BGP message size).

There are two reasons why BGP uses keepalive messages. First, periodic message
exchange is needed because BGP uses TCP for transport. and TCP does not include a
mechanism to continually test whether a connection endpoint is reachable. However.
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TCP does report an error to an application if it cannot deliver data the application sends.
Thus, as long as both sides periodically send « keepalive, they will know if the TCP
connection fails. Second, keepalives conserve bandwidth compared to other messages.
Many early routing protocols used periodic exchange of routing information to test con-
nectivity. However, because routing information changes infrequently. the message
content seldom changes. Furthermore, because routing messages are usually large,
resending the same message wastes network bandwidth needlessly. To avoid the ineffi-
ciency. BGP separates the functionality of route update from connectivity testing, allow-
ing BGP to send small KEEPALIVE messages frequently, and reserving larger UPDATE
messages for situations when reachability information changes.

Recall that a BGP speaker specifies a hold timer when it opens a connection; the
hold timer specifies a maximum time that BGP is to wait without receiving a message.
As a special case, the hold timer can be zero to specify that no KEEPALIVE messages
are used. If the hold timer is greater than zero, the standard recommends setting the
KEEPALIVE interval to one third of the hold timer. In no case can a BGP speaker
make the KEEPALIVE interval less than one second (which agrees with the requirement
that a nonzero hold timer cannot be less than three seconds).

15.17 Information From The Receiver’s Perspective

Unlike most protocols that propagate routing information, an Exterior Gateway
Protocol does not merely report the set of destinations it can reach. Instead. exterior
protocols must provide information that is correct from the outsider's perspective.
There are two issues: policies and optimal routes. The policy issue is obvious: a router
inside an autonomous system may be allowed to reach a given destination, while outsid-
ers are prohibited from reaching the same destination. The routing issue means that a
router must advertise a next hop that is optimal from the outsider’s perspective. Figure
15.12 illustrates the idea.



Sec. 15.17 Information From The Receiver’s Perspective 285

To peer in other Autonomous System

Runs BGP

Net 2

Figure 15.12 Example of an autonomous system. Router R, runs BGP and
reports information from the outsider’s perspective, not from its
own routing table.

In the figure, router R, has been designated to speak BGP on behalf of the auto-
nomous system. It must report reachability to networks / through 4. However, when
giving a next hop, it reports network / as reachable through router R, networks 3 and 4
as reachable through router R, and network 2 as reachable through R,.

15.18 The Key Restriction Of Exterior Gateway Protocols

We have already seen that because exterior protocols follow policy restrictions, the
networks they advertise may be a subset of the networks they can reach. However,
there is a more fundamental limitation imposed on exterior routing:

An exterior gateway protocol does not communicate or interpret dis-
tance metrics, even if metrics are available.

Protocols like BGP do allow a speaker to declare that a destination has become un-
reachable or to give a list of autonomous systems on the path to the destination. but
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they cannot transmit or compare the cost of two routes unless the routes come from
within the same autonomous system. In essence, BGP can only specity whether a path
exists to a given destination; it cannot transmit or compute the shorter of two paths.

We can see now why BGP is careful to label the origin of information it sends.
The essential observation is this: when a router receives advertisements for a given des-
tination from peers in two different autonomous systems, it cannot compare the costs.
Thus, advertising reachability with BGP is equivalent to saying, "My autonomous sys-
tem provides a path to this network.”” There is no way for the router to say. ~*My auto-
nomous system provides a better path to this network than another autonomous sys-
tem.””

Looking at interpretation of distances allows us to realize that BGP cannot be used
as a routing algorithm. In particular, even if a router learns about two paths to the same
network., it cannot know which path is shorter because it cannot know the cost of routes
across intermediate autonomous systems. For example, consider a router that uses BGP
to communicate with two peers in autonomous systems p and f. If the peer in auto-
nomous system p advertises a path to a given destination through autonomous systems
p. ¢. and r, and the peer in f advertises a path to the same destination through auto-
nomous systems f and g, the receiver has no way of comparing the lengths of the two
paths. The path through three autonomous systems might involve one local area net-
work in cach system, while the path through two autonomous systems might require
several hops in cach. Because a receiver does not obtain full routing information, it
cannot compare.

Because it does not include a distance metric. an autonomous system must be care-
ful to advertise only routes that traffic should follow. Technically, we say that an Exte-
rior Gateway Protocol is a reachability protocol rather than a routing protocol. We can
summarize:

Because an Exterior Gatewavy Protocol like BGP onlv propagates
reachability information, a receiver can implement policy constraints,
but cannot choose a least cost route. A sender must only advertise
paths that traffic should follow.

The key point here is that any internet which uses BGP to provide exterior routing in-
formation must either rely on policies or assume that each autonomous system crossing
is equally expensive. Although it may seem innocuous, the restriction has some surpris-
ing consequences:

. Although BGP can advertise multiple paths to a given network, it
does not provide for the simultaneous use of multiple paths. That is,
at any given instant. all traffic routed from a .omputer in one auto-
nomous system to a network in another will traverse one path, even
if multiple physical connections are present. Also note that an out-
side autonomous system will only use one return path even if the
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source system divides outgoing traffic among two or more paths. As
a result, delay and throughput between a pair of machines can be
asymmetric, making an internet difficult to monitor or debug.

2. BGP does not support load sharing on routers between arbitrary auto-
nomous systems. If two autonomous systems have multiple routers
connecting them, one would like to balance the traffic equally among
all routers. BGP allows autonomous systems to divide the load by
network (e.g.. to partition themselves into multiple subsets and have
multiple routers advertise partitions). but it does not support more
general load sharing.

3. As a special case of point 2, BGP alone is inadequate for optimal
routing in an architecture that has two or more wide area networks
interconnected at multiple points. Instead, managers must manually
configure which networks are advertised by each exterior router.

4. To have rationalized routing, all autonomous systems in an internet
must agree on a consistent scheme for advertising reachability. That
is. BGP alone will not guarantee global consistency.

15.19 The Internet Routing Arbiter System

For an internet to operate correctly, routing information must be globally con-
sistent. Individual protocols such as BGP that handle the exchange between a pair of
routers. do not guarantee global consistency. Thus, a mechanism is needed to rational-
ize routing information globally. In the original Internet routing architecture. the core
svstem guaranteed globally consistent routing information because at any time the core
had exactly one path to each destination. When the core system was removed, a new
mechanism was created to rationalize routing information.

Known as the routing arbiter (RA) system. the new mechanism consists of a repli-
cated, authenticated database of reachability information. Updates to the database are
authenticated 10 prevent an arbitrary router from advertising a path to a given destina-
tion. In general, only an autonomous system that owns a given network is allowed to
advertise reachability. The need for such authentication became obvious in the early
core system, which allowed any router to advertise reachability to any network. On
several occasions, routing errors occurred when a router inadvertently advertised in-
correct reachability information. The core accepted the information and changed routes,
causing some networks to become unreachable.

To understand how other routers access the routing arbiter database, consider the
current Internet architecture. We said that major ISPs interconnect at Network Access
Points (NAPs). Thus, in terms of routing, a NAP represents the boundary between mul-
tiple autonomous systems. Although it would be possible to use BGP among each pair
of ISPs at the NAP, doing so is both inefficient and prone to inconsistencies. Instead,
each NAP has a computer called a route server (RS) that maintains a copy of the rout-
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ing arbiter database and runs BGP. Each ISP designates one of its routers near a NAP
to be a BGP border router. The designated border router maintains a connection to the
route server over which it uses BGP. The ISP advertises reachability to its networks
and the networks of its customers, and learns about networks in other ISPs.

One of the chief advantages of using BGP for route server access lies in its ability
to carry negative information as well as positive information. When a destination be-
comes unreachable, the ISP informs the route server. which then makes the information
available to other ISPs. Spreading negative information reduces unnecessary traffic be-
cause datagrams to unreachable destinations can be discarded before they transit from
one ISP to anothery.

15.20 BGP NOTIFICATION Message

In addition to the OPEN and UPDATE message types described above. BGP sup-
ports a NOTIFICATION message type used for control or when an error occurs. Errors
are permanent — once it detects a problem, BGP sends a notification message and then
closes the TCP connection. Figure 15.13 illustrates the message format.

0 8 16 31
ERR CODE ERR SUBCODE DATA

Figure 15.13 BGP NOTIFICATION message format. These octets follow the
standard message header.

The 8-bit field labeled ERR CODE specifies one of the possible reasons listed in
Figure 15.14.

ERR CODE Meaning

Error in message header
Error in OPEN message
Error in UPDATE message
Hold timer expired

Finite state machine error
Cease (terminate connection)

DAL WN -

Figure 15.14 The possible values of the ERR CODE field in a BGP NOTIFI-
CATION message.

+Like the core system it replaced. the routing arbiter system does not include default roues. As a conse-
quence, it is sometimes called a default-free zone.
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For each possible ERR CODE, the ERR SUBCODE field contains a further expla-
nation. Figure 15.15 lists the possible values.

Subcodes For Message Header Errors

1 Connection not synchronized
2 Incorrect message length
3 Incorrect message type

Subcodes For OPEN Message Errors

Version number unsupported
Peer AS invalid

BGP identifier invalid
Unsupported optional parameter
Authentication failure

Hold time unacceptable

A BWN =

Subcodes For UPDATE Message Errors

Attribute list malformed
Unrecognized attribute
Missing attribute
Attribute flags error
Attribute length error
Invalid ORIGIN attribute
AS routing loop

Next hop invalid

Error in optional attribute
Invalid network field
Malformed AS path

—~ O OWONOONLAEWN -
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Figure 15.15 The meaning of the ERR SUBCODE field in a BGP NOTIFI-
CATION message.

15.21 Decentralization Of Internet Architecture

Two important architecture questions remain unanswered. The first focuses on
centralization: how can the Internet architecture be modified to remove dependence on a
(centralized) router system? The second concerns levels of trust: can an internet archi-
tecture be expanded to allow closer cooperation (trust) between some autonomous sys-
tems than among others?
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Removing all dependence on a central system and adding trust are not easy.
Although TCP/IP architectures continue to evolve, centralized roots are evident in many
protocols. Without some centralization, each ISP would need to exchange reachability
information with all ISPs to which it attached. Consequently, the volume of routing
traffic would be significantly higher than with a routing arbiter scheme. Finally, cen-
tralization fills an important role in rationalizing routes and guaranteeing trust — in ad-
dition to storing the reachability database, the routing arbiter system guarantees global
consistency and provides a trusted source of information.

15.22 Summary

Routers must be partitioned into groups or the velume of routing traffic would be
intolerable. The connected Internet is composed of a set of autonomous systems, where
each autonomous system consists of routers and networks under one administrative au-
thority. An autonomous system uses an Exterior Gateway Protocol to advertise routes
to other autonomous systems. Specifically, an autonomous system must advertise
reachability of its networks to another system before its networks are reachable from
sources within the other system.

The Border Gateway Protocol. BGP, is the most widely used Exterior Gateway
Protocol. We saw that BGP contains three message types that are used to initiate com-
munication (OPEN), send reachability information (UPDATE) and report an error con-
dition (NOTIFICATION). Each message starts with a standard > .der that includes
(optional) authentication information. BGP uses TCP for communication, but has a
keepalive mechanism to ensure that peers remain in communication.

In the global Internet, each ISP is assigned to a separate autonomous system, and
the main boundary among autonomous systems occurs at NAPs, where multiple ISPs
interconnect. Instead of requiring pairs of ISPs to use BGP to exchange routing infor-
mation, each NAP includes a route server. An ISP uses BGP to communicate with the
route server, both to advertise reachability to its networks and its customers’ networks
as well as to learn about networks in other ISPs.

FOR FURTHER STUDY

Background on early Internet routing can be found in [RFCs 827, 888, 904, and
975]. Rekhter and Li [RFC 1771] describes version 4 of the Border Gateway Protocol
(BGP-4). BGP has been through three substantial revisions; earlier versions appear in
[RFCs 1163, 1267, and 1654]. Traina [RFC 1773] reports experience with BGP-4, and
Traina [RFC 1774] analyzes the volume of routing traffic generated. Finally, Villam-
izar et. al. {RFC 2439] considers the problem of route flapping.
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EXERCISES

15.1 If your site runs an Exterior Gateway Protocol such as BGP, how many routes does
NSFNET advertise?

15.2 Some implementations of BGP use a ‘‘hold down’’ mechanism that causes the protocol
to delay accepting an OPEN from a peer for a fixed time following the receipt of a cease
request message from that neighbor. Find out what problem a hold down helps solve.

15.3 For the networks in Figure 15.2, which router(s) should run BGP? Why?

15.4 The formal specification of BGP includes a finite state machine that explains how BGP
operates. Draw a diagram of the state machine and label transitions.

15.5 What happens if a router in an autonomous system sends BGP routing update messages
to a router in another autonomous system, claiming to have reachability for every possi-
ble internet destination?

15,6  Can two autonomous systems establish a routing loop by sending BGP update messages
to one another? Why or why not?

15.7 Should a router that uses BGP to advertise routes treat the set of routes advertised dif-
ferently than the set of routes in the local routing table? For example, should a router
ever advertise reachability if it has not installed a route to that network in its routing
table? Why or why not? Hint: read the RFC.

158  With regard to the previous question, examine the BGP-4 specification carefully. Is it
legal to advertise reachability to a destination that is not listed in the local routing table?

15.9 If you work for a large corporation, find out whether it includes more than one auto-
nomous system. If so, how do they exchange routing information?

15.10  What is the chief advantage of dividing a large, multi-rational corporation into multiple
autonomous systems? What is the chief disadvantage?

15.11 Corporations A and B use BGP to exchange routing inforniation. To keep computers in
B from reaching machines on one of its networks, N, the neiwcix administrator at cor-
poration A configures BGP to omit N from advertisements sent to B. Is network N
secure? Why or why not?

15.12 Because BGP uses a reliable transport protocol, KEEPALIVE messages cannot be lost.
Does it make sense to specify a keepalive interval as one-third of the hold timer value?
Why or why not?

15.13  Consult the RFCs for details of the Path Attributes field. What is the minimum size of a

BGP UPDATE message?
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Routing: In An Autonomous
System (RIP, OSPF,
HELLO)

16.1 Introduction

The previous chapter introduces the autonomous system concept and examines
BGP, an Exterior Gateway Protocol that a router uses to advertise networks within its
system to other autonomous systems. This chapter completes our overview of internet
routing by examining how a router in an autonomous system learns about other net-
works within its autonomous system.

16.2 Static Vs. Dynamic Interior Routes

Two routers within an autonomous system are said to be interior to one another.
For example, two routers on a university campus are considered interior to one another
as long as machines on the campus are collected into a single autonomous system.

How can routers in an autonomous system learn about networks within the auto-
nomous system? In small, slowly changing internets, managers can establish and modi-
fy routes by hand. The administrator keeps a table of networks and updates the table
whenever a new network is added to, or deleted from, the autonomous system. For ex-
ample, consider the small corporate internet shown in Figure 16.1.
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Net 1

Net 2
7]
Net 3
A
Net 4 Net 5

Figure 16.1 An example of a small internet consisting of 5 Ethernets and 4
routers at a single site. Only one possible route exists between
any two hosts in this internet.

Routing for the internet in the figure is trivial because only one path exists between
any two points. The:manager can manually configure routes in all hosts and routers. If
the internet changes~(e.g.. a new network is added). the manager must reconfigure the
routes in all machines,

The disadvantages of a manual system are obvious: manual systems cannot accom-
modate rapid growth or rapid change. In large, rapidly changing environments like the
global Internet, humans simply cannot respond to changes fast enough to handle prob-
lems; automated methods must be used. Automated methods can also help improve re-
liability and response to failure in small internets that have alternate routes. To see
how, consider what happens if we add one additional router to the internet in Figure
16.1, producing the internet shown in Figure 16.2.

In internet architectures that have multiple physical paths, managers usually choose
one to be the primary path. If the routers along the primary path fail, routes must be
changed to send traffic along an alternate path. Changing routes manually is both time
consumning and error-prone. Thus, even in small internets, an automated system should
be used to change routes quickly and reliably.
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Net 1

Net 2

Net 3

Net 4 Net 5

Figure 16.2 The addition of router R; introduces an alternate path between
networks 2 and 3. Routing software can quickly adapt to a
failure and automatically switch routes to the alternate path.

To automate the task of keeping network reachability information accurate, interior
routers usually communicate with one another, exchanging either network reachability
data or network routing information from which reachability can be deduced. Once the
reachability information for an entire autonomous system has been assembled, one of
the routers in the system can advertise it to other autonomous systems using an Exterior
Gateway Protocol.

Unlike exterior router communication, for which BGP provides a widely accepted
standard, no single protocol has emerged for use within an autonomous system. Part of
the reason for diversity comes from the varied topologies and technologies used in auto-
nomous systems. Another part of the reason stems from the tradeoffs between simplici-
ty and functionality — protocols that are easy to install and configure do not provide
sophisticated functionality. As a result, a handful of protocols have become popular.
Most small autonomous systems choose a single protocol, and use it exclusively to pro-
pagate routing information internally. Larger autonomous systems often choose a small
set.

Because there is no single standard, we use the term Interior Gateway Protocol
(IGP) as a generic description that refers to any algorithm that interior routers use when
they exchange network reachability and routing information. For example, the last gen-
eration of core routers Tseéd'a protocol named SPREAD as its Interior Gateway Protocol.
Some autonomous systems use BGP as their IGP. although this seldom makes sense for
small autonomous systems that span local area networks with broadcast capability.

Figure 16.3 illustrates two autonomous systems, each using an IGP to propagate
routing information among its interior routers.
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Figure 16.3 Conceptual view of two autonomous systems each using its own
IGP internally, but using BGP to communicate between an exte-
rior router and the other system.

In the figure, IGP, refers to the interior router protocol used within autonomous
system I, and IGP, refers to the protocol used within autonomous system 2. The figure
also illustrates an important idea:

A single router may use two different routing protocols simultaneous-
ly, one for communication outside its autonomous system and another
Jor communication within its autonomous system.

In particular, routers that run BGP to advertise reachability usually also need to run an
IGP to obtain information from within their autonomous system.

16.3 Routing Information Protocol (RIP)

16.3.1 History of RIP

One of the most widely used IGPs is the Routing Information Protocol (RIP), also
known by the name of a program that implements it, routedt. The routed software was
originally designed at the University of California at Berkeley to provide consistent
routing and reachability information among machines on their local networks. It relies
on physical network broadcast to make routing exchanges quickly. It was not designed
to be used on large, wide area networks (although vendof]sil’)r}pw sell versions of RIP
adapted for use on WANS). -

Based on earlier intemetworking research done at Xerox Corporation’s Palo Alto
Research Center (PARC), routed implements a protocol derived from the Xerox NS
Routing Information Protocol (RIP), but generalizes it to cover multiple families of net-
works.

#The name comes from the UNIX convention of attaching ‘‘d’’ to the names of daemon processes; it is
pronounced ‘‘route-d’’.
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Despite minor improvements over its predecessors, the popularity of RIP as an IGP
does not arise from its technical merits alone. Instead, it is the result of Berkeley distri-
buting routed software along with their popular 4BSD UNIX systems. Thus, many
TCP/IP sites adopted and installed routed, and started using RIP without even consider-
ing its technical merits or limitations. Once installed and running, it became the basis
for local routing, and research groups adopted it for larger networks.

Perhaps the most startling fact about RIP is that it was built and widely adopted
before a formal standard was written. Most implementations were derived from the
Berkeley code, with interoperability among them limited by the programmer’s under-
standing of undocumented details and subtleties. As new versions appeared, more prob-
lems arose. An RFC standard appeared in June 1988, and made it possible for vendors
to ensure interoperability.

16.3.2 RIP Operation

The underlying RIP protocol is a straightforward implementation of distance-vector
routing for local networks. It partitions participants into active and passive (i.e., silent)
machines. Active participants advertise their routes to others; passive participants listen
to RIP messages and use them to update their routing table, but do not advertise. Only
a router can run RIP in active mode; a host must use passive mode.

A router running RIP in active mode broadcasts a routing update message every 30
seconds. The update contains information taken from the router’s current routing data-
base. Each update contains a set of pairs, where each pair contains an IP network ad-
dress and an integer distance to that network. RIP uses a hop count metric to measure
distances. In the RIP metric, a router is defined to be one hop from a directly connect-
ed networkt, two hops from a network that is reachable through one other router, and
so on. Thus, the number of hops or the hop count along a path from a given source to a
given destination refers to the number of routers that a datagram encounters along that
path. It should be obvious that using hop counts to calculate shortest paths does not al-
ways produce optimal results. For example, a path with hop count 3 that crosses three
Ethernets may be substantially faster than a path with hop count 2 that crosses two sa-
tellite connections. To compensate for differences in technologies, many RIP imple-
mentations allow managers to configure artificially high hop counts when advertising
connections to slow networks.

Both active and passive RIP participants listen to all broadcast messages, and up-
date their tables according to the distance-vector algorithm described earlier. For exam-
ple, in the internet of Figure 16.2, router R, will broadcast a message on network 2 that
contains the pair (/, /), meaning that it can reach network / at cost /. Routers R, and
R; will receive the broadcast and install a route to network / through R, (at cost 2).
Later, routers R, and R, will include the pair (/,2) when they broadcast their RIP mes-
sages on network 3. Eventually, all routers and hosts will install a route to network /.

RIP specifies a few rules to improve performance and reliability. For example,
once a router learns a route from another router, it must apply hvsteresis, meaning that
it does not replace the route with an equal cost route. In our example, if routers R, and

+Other routing protocols define a direct connection to be zero hops.
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R; both advertise network [ at cost 2, routers R, and R, will install a route through the
one that happens to advertise first. We can summarize:

To prevent oscillation among equal cost paths, RIP specifies that ex-
isting routes should be retained until a new route has strictly lower
cost.

What happens if the first router to advertise a route fails (e.g., if it crashes)? RIP
specifies that all listeners must timeout routes they learn via RIP. When a router in-
stalls a route in its table, it starts a timer for that route. The timer must be restarted
whenever the router receives another RIP message advertising the route. The route be-
comes invalid if 180 seconds pass without the route being advertised again.

RIP must handle three kinds of errors caused by the underlying algorithm. First,
because the algorithm does not explicitly detect routing loops, RIP must either assume
participants can be trusted or take precautions to prevent such loops. Second, to prevent
instabilities RIP must use a low value for the maximum possible distance (RIP uses 16).
Thus, for internets in which legitimate hop counts approach /6, managers must divide
the internet into sections or use an alternative protocol. Third, the distance-vector algo-
rithm used by RIP can create a slow convergence or count to infinity problem, in which
inconsistencies arise because routing update messages propagate slowly across the net-
work. Choosing a small infinity (/6) helps limit slow convergence, but does not elim-
nate it.

Routing table inconsistency is not unique to RIP. It is a fundamental problem that
occurs with any distance-vector protocol in which update messages carry only pairs of
destination network and distance to that network. To understand the problem consider
the set of routers shown in Figure 16.4. The figure depicts routes to network / for the
internet shown in Figure 16.2.

(a)

(h)

Figure 16.4 The slow convergence problem. In (a) three routers cach have a
route to network /. In (b) the connection to network / has van-
ished, but R, causes a foop by advertising it.
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As Figure 16.4a shows, router R, has a direct connection to network /, so there is a
route in its table with distance /, which will be included in its periodic broadcasts.
Router R, has learned the route from R, installed the route in its routing table, and ad-
vertises the route at distance 2. Finally, R, has learned the route from R, and advertises
it at distance 3.

Now suppose that R,’s connection to network / fails. R, will update its routing
table immediately to make the distance /6 (infinity). In the next broadcast, R, will re-
port the higher cost route. However, unless the protocol includes extra mechanisms to
prevent it, some other router could broadcast its routes before R,. In particular, suppose
R, happens to advertise routes just after R,’s connection fails. If so, R, will receive R,’s
message and follow the usual distance-vector algorithm: it notices that R, has advertised
a route to network / at lower cost, calculates that it now takes 3 hops to reach network
1 (2 for R, to reach network I plus / to reach R,), and installs a new route with R, list-
ed as the next hop. Figure 16.4b depicts the result. At this point, if either R, or R, re-
ceives a datagram destined for network I, they will route the datagram back and forth
until the datagram’s time-to-live counter expires.

Subsequent RIP broadcasts by the two routers do not solve the problem quickly.
In the next round of routing exchanges, R, broadcasts its routing table entries. When it
learns that R,’s route to network / has dlstance 3, R, calculates a new distance for its
route, makmg it 4. In the third round, R, receives a report from R, which includes the
increased distance, and then increases the distance in its table to 5 The two routers
continue counting to RIP infinity.

16.3.3 Solving The Slow Convergence Problem

For the example in Figure 16.4, it is possible to solve the slow convergence prob-
lem by using a technique known as split horizon update. When using split horizon, a
router does not propagate information about a route back over the same interface from
which the route arrived. In the example, split horizon prevents router R, from advertis-
ing a route to network / back to router R,, so if R, loses connectivity to network /, it
must stop advertising a route. With split horizon, no routing loop appears in the exam-
ple network. Instead, after a few rounds of routing updates, all routers will agree that
the network is unreachable. However, the split horizon heuristic does not prevent rout-
ing loops in all possible topologies as one of the exercises suggests.

Another way to think of the slow convergence problem is in terms of information
flow. If a router advertises a short route to some network, all receiving routers respond
quickly to install that route. If a router stops advertising a route, the protocol must
depend on a timeout mechanism before it considers the route unreachable. Once the
timeout occurs, the router finds an alternative route and starts propagating that informa-
tion. Unfortunately, a router cannot know if the alternate route depended on the route
that just disappeared. Thus, negative information does not always propagate quickly. A
short epigram captures the idea and explains the phenomenon:

Good news travels quickly; bad news travels slowly.
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Another technique used to solve the slow convergence problem employs hold
down. Hold down forces a participating router to ignore information about a network
for a fixed period of time following receipt of a message that claims the network is un-
reachable. Typically, the hold down period is set to 60 seconds. The idea is to wait
long enough to ensure that all machines receive the bad news and not mistakenly accept
a message that is out of date. It should be noted that all machines participating in a RIP
exchange need to use identical notions of hold down, or routing loops can occur. The
disadvantage of a hold down technique is that if routing loops occur, they will be
preserved for the duration of the hold down period. More important, the hold down
technique preserves all incorrect routes during the hold down period, even when alterna-
tives exist.

A final technique for solving the ‘slow convergence problem is called poison re-
verse. Once a connection disappears, the router advertising the connection retains the
entry for several update periods, and includes an infinite cost in its broadcasts. To
make poison reverse most effective, it must be combined with triggered updates. Trig-
gered updates force a router to send an immediate broadcast when receiving bad news.
instead of waiting for the next periodic broadcast. By sending an update immediately. a
router minimizes the time it is vulnerable to believing good news.

Unfortunately, while triggered updates, poison reverse, hold down. and split hor-
izon techniques all solve some problems, they introduce others. For example, consider
what happens with triggered updates when many routers share a common network. A
single broadcast may change all their routing tables, triggering a new round of broad-
casts. If the second round of broadcasts changes tables, it will trigger even more broad-
casts. A broadcast avalanche can resulitf.

The use of broadcast, potential for routing loops, and use of hold down to prevent
slow convergence can make RIP extremely inefficient in a wide area network. Broad-
casting always takes substantial bandwidth. Even if no avalanche problems occur, hav-
ing all machines broadcast periodically means that the traffic increases as the number of
routers increases. The potential for routing loops can also be deadly when line capacity
is limited. Once lines become saturated by looping packets, it may be difficult or im-
possible for routers to exchange the routing messages needed to break the loops. Also,
in a wide area network, hold down periods are so long that the timers used by higher
level protocols can expire and lead to broken connections. Despite these well-known
problems, many groups continue to use RIP as an IGP in wide area networks.

16.3.4 RIP1 Message Format

RIP messages can be broadly classified into two types: routing information mes-
sages and messages used to request information. Both use the same format which con-
sists of a fixed header followed by an optional list of network and distance pairs. Fig-
ure 16.5 shows the message format used with version / of the protocol, which is known
as RIPI:

+To help avoid collisions on the underlying network. RIP requires each router to wait a small random
time before sending a triggered update.
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0 8 16 24 31
COMMAND (1-5)| VERSION (1) MUST BE ZERO
FAMILY OF NET 1 MUST BE ZERO
IP ADDRESS OF NET 1
MUST BE ZERO
MUST BE ZERO
DISTANCE TO NET 1
FAMILY OF NET 2 MUST BE ZERO
IP ADDRESS OF NET 2
MUST BE ZERO .
MUST BE ZERO
DISTANCE TO NET 2

Figure 16.5 The format of a version 1 RIP message. After the 32-bit header,
the message contains a sequence of pairs, where each pair con-
sists of a network IP address and an integer distance to that net-
work.

In the figure, field COMMAND specifies an operation according to the following
table:

Command Meaning
1 Request for partial or full routing information
2 Response containing network-distance pairs from

sender’s routing table
Turn on trace mode (obsolete)
Turn off trace mode (obsolete)
Reserved for Sun Microsystems internal use
Update Request (used with demand circuits)
Update Response (used with demand circuits)
Update Acknowledge (used with demand circuits)

Iooeunsw

A router or host can ask another router for routing information by sending a request
command. Routers reply to requests using the response command. In most cases, how-
ever, routers broadcast unsolicited response messages periodically. Field VERSION
contains the protocol version number (/ in this case), and is used by the receiver to ver-
ify it will interpret the message correctly.
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16.3.5 RIP1 Address Conventions

The generality of RIP is also evident in the way it transmits network addresses.
The address format is not limited to use by TCP/IP; it can be used with multiple net-
work protocol suites. As Figure 16.5 shows, each network address reported by RIP can
have an address of up to 14 octets. Of course, IP addresses need only 4; RIP specifies
that the remaining octets must be zerot. The field labeled FAMILY OF NET i identi-
fies the protocol family under which the network address should be interpreted. RIP
uses values assigned to address families under the 4BSD UNIX operating system (IP
addresses are assigned value 2).

In addition to normal IP addresses, RIP uses the convention that address 0.0.0.0
denotes a defaulr route. RIP attaches a distance metric to every route it advertises, in-
cluding default routes. Thus, it is possible to arrange for two routers to advertise a de-
fault route (e.g., a route to the rest of the internet) at different metrics, making one of
them a primary path and the other a backup.

The final field of each entry in a RIP message, DISTANCE TO NET i, contains an
integer count of the distance to the specified network. Distances are measured in router
hops, but values are limited to the range / through 16, with distance /6 used to signify
infinity (i.e., no route exists).

16.3.6 RIP1 Route Interpretation And Aggregation

Because RIP was originally designed to be used with classful addresses, version 1
did not include any provision for a subnet mask. When subnet addressing was added to
IP. version 1 of RIP was extended to permit routers to exchange subnetted addresses.
However, because RIP1 update messages do not contain explicit mask information, an
important restriction was added: a router can include host-specific or subnet-specific ad-
dresses in routing updates as long as all receivers can unambiguously interpret the ad-
dresses. In particular, subnet routes can only be included in updates sent across a net-
work that is part of the subnetted prefix, and only if the subnet mask used with the net-
work is the same as the subnet mask used with the address. In essence, the restriction
means that RIP1 cannot be used to propagate variable-length subnet address or classless
addresses. We can summarize:

Because it does not include explicit subnet information, RIP1 only
permits a router to send subnet routes if receivers can unambiguously
interpret the addresses according to the subnet mask they have avail-
able locally. As a consequence, RIP1 can only be u..1 with classful
or fixed-length subnet addresses.

What happens when a router running RIP1 connects to one or more networks that
are subnets of a prefix N as well as to one or more networks that are not part of N? The
router must prepare different update messages for the two types of interfaces. Updates
sent over the interfaces that are subnets of N can include subnet routes, but updates sent

7The designers chose to locate an IP address in the third through sixth octets of the address field to en-
sure 32-bit alignment.
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over other interfaces cannot. Instead, when sending over other interfaces the router is
required to aggregate the subnet information and advertise a single route to network N.

16.3.7 RIP2 Extensions

The restriction on address interpretation means that version 1 of RIP cannot be
used to propagate either variable-length subnet addresses or the classless addresses used
with CIDR. When version 2 of RIP (RIP2) was defined, the protocol was extended to
include an explicit subnet mask along with each address. In addition, RIP2 updates in-
clude explicit next-hop information. which prevents routing loops and slow conver-
gence. As a result. RIP2 offers significantly increased functionality as well as improved
resistance to errors.

16.3.8 RIP2 Message Format

The message format used with RIP2 is an extension of the RIP1 format, with addi-
tional information occupying unused octets of the address field. In particular, each ad-
dress includes an explicit next hop as well as an explicit subnet mask as Figure 16.6 il-
lustrates.

0 8 16 24 31
COMMAND (1-5) | VERSION (1) MUST BE ZERO
FAMILY OF NET 1 ROUTE TAG FOR NET 1

IP ADDRESS OF NET 1
SUBNET MASK FOR NET 1
NEXT HOP FOR NET 1
DISTANCE TO NET 1
FAMILY OF NET 2 ROUTE TAG FOR NET 2
IP ADDRESS OF NET 2
SUBNET MASK FOR NET 2
NEXT HOP FOR NET 2
DISTANCE TO NET 2

Figure 16.6 The format of a RIP2 message. In addition to pairs of a network
IP address and an integer distance to that network, the message
contains a subnet mask for each address and explicit next-hop
information.
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RIP2 also attaches a 16-bit ROUTE TAG field to each entry. A router must send
the same tag it receives when it transmits the route. Thus, the tag provides a way to
propagate additional information such as the origin of the route. In particular, if RIP2
learns a route from another autonomous system, it can use the ROUTE TAG to pro-
pagate the autonomous system’s number.

Because the version number in RIP2 occupies the same octet as in RIP1, both ver-
sions of the protocols can be used on a given router simultaneously without interfer-
ence. Before processing an incoming message, RIP software examines the version
number.

16.3.9 Transmitting RIP Messages

RIP messages do not contain an explicit length field or an explicit count of entries.
Instead, RIP assumes that the underlying -delivery mechanism will tell the receiver the
length of an incoming message. In particular, when used with TCP/IP, RIP messages
rely on UDP to tell the receiver the message length. RIP operates on UDP port 520.
Although a RIP request can originate at other UDP ports, the destination UDP port for
requests is always 520, as is the source port from which RIP broadcast messages ori-
ginate.

16.3.10 The Disadvantage Of RIP Hop Counts

Using RIP as an interior router protocol limits routing in two ways. First, RIP res-
tricts routing to a hop-count metric. Second, because it uses a small value of hop count
for infinity, RIP restricts the size of any internet using it. In particular, RIP restricts the
span of an internet (i.e., the maximum distance across) to 16. That is, an internet using
RIP can have at most 15 routers between any two hosts.

Note that the limit on network span is neither a limit on the total number of routers
nor a limit on density. In fact, most campus networks have a small span even if they
have many routers because the topology is arranged as a hierarchy. Consider, for ex-
ample, a typical corporate intranet. Most use a hierarchy that consists of a high-speed
backbone network with multiple routers each connecting the backbone to a workgroup,
where each workgroup occupies a single LAN. Although the corporation can include
dozens of workgroups, the span of the entire intranet is only 2. Even if each workgroup
is extended to include a router that connects one or more additional LANSs, the max-
imum span only increases to 4. Similarly, extending the hierarchy one more level only
increases the span to 6. Thus, the limit that RIP imposes affects large autonomous sys-
tems or autonomous systems that do not have a hierarchical organization.

Even in the best cases, however, hop counts provide only a crude measure of net-
work capacity or responsiveness. Thus, using hop counts does not always yield routes
with least delay or highest capacity. Furthermore, computing routes on the basis of
minimum hop counts has the severe disadvantage that it makes routing relatively static
because routes cannot respond to changes in network load. The next sections consider
an alternative metric, and explain why hop count metrics remain popular despite their
limitations.
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16.4 The Hello Protocol

The HELLO protocol provides an example of an IGP that uses a routing metric
other than hop count. Although HELLO is now obsolete, it was significant in the histo-
ry of the Internet because it was the JGP used among the original NSFNET backbone
““fuzzball’ routerst. HELLO is significant to us because it provides an example of a
protocol that uses a metric of delay.

HELLO provides two functions: it synchronizes the clocks among a set of
machines, and it allows each machine to compute shortest delay paths to destinations.
Thus, HELLO messages carry timestamp information as well as routing information.
The basic idea behind HELLO is simple: each machine participating in the HELLO ex-
change maintains a table of its best estimate of the clocks in neighboring machines. Be-
fore transmitting a packet, a machine adds its timestamp by copying the current clock
value into the packet. When a packet arrives, the receiver computes an estimate of the
current delay on the link by subtracting the timestamp on the incoming packet from the
local estimate for the current clock in the neighbor. Periodically, machines poll their
neighbors to reestablish estimates for clocks.

HELLO messages also allow participating machines to compute new routes. The
protocol uses a modified distance-vector scheme that uses a metric of delay instead of
hop count. Thus, each machine periodically sends its neighbors a table of destinations
it can reach and an estimated delay for each. When a message arrives from machine X,
the receiver examines each entry in the message and changes the next hop to X if the
route through X is less expensive than the current route (i.e.. any route where the delay
to X plus the delay from X to the destination is less than the current delay to the desti-
nation).

16.5 Delay Metrics And Oscillation

It may seem that using delay as a routing metric would produce better routes than
using a hop count. In fact, HELLO worked well in the early Internet backbone. How-
ever, there is an important reasons why delay is not used as a metric in most protocols:
instability.

Even if two paths have identical characteristics. any protocol that changes routes
quickly can become unstable. Instability arises because delay, unlike hop counts, is not
fixed. Minor variations in delay measurements occur because of hardware clock drift,
CPU load during measurement, or bit delays caused by link-level synchronization.
Thus, if a routing protocol reacts quickly to slight differences in delay, it can produce a
two-stage oscillation effect in which traffic switches back and forth between the alter-
nate paths. In the first stage, the router finds the delay on path / slightly less and
abruptly switches traffic onto it. In the next round. the router finds that path B has
slightly less delay and switches traffic back.

To help avoid oscillation, protocols that use delay implement several heuristics.
First, they employ the hold down technique discussed previously to prevent routes from

“The term fuzzball referred to a noncommercial router that consisted of specially-crafted protocol
software running on a PDP11 computer.
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changing rapidly. Second, instead of measuring as accurately as possible and compar-
ing the values directly, the protocols round measurements to large multiples or imple-
ment a minimum threshold by ignoring differences less than the threshold. Third, in-
stead of comparing each individual delay measurement, they keep a running average of
recent values or alternatively apply a K-out-of-N rule that requires at least K of the most
recent N delay measurements be less than the current delay before the route can be
changed.

Even with heuristics. protocols that use delay can become unstable when compar-
ing delays on paths that do not have identical characteristics. To undersand why, it is
necessary to know that traffic can have a dramatic effect on delay. With no traffic, the
network delay is simply the time required for the hardware to transfer bits from one
point to another. As the traffic load imposed on the network increases, however, delays
begin to rise because routers in the system need to enqueue packets that are waiting for
transmission. If the load is even slightly more than 100% of the network capacity, the
queue becomes unbounded, meaning that the effective delay becomes infinite. To sum-
marize:

The effective delay across a network depends on traffic; as the load
increases to 100% of the nerwork capacity, delay grows rapidly.

Because delays are extremely sensitive to changes in load, protocols that use delay
as a metric can easily fall into a positive feedback cvcle. The cycle is triggered by a
small external change in load (e.g., one computer injecting a burst of additional traffic).
The increased traffic raises the delay. which causes the protocol to change routes. How-
ever, because a route change affects the load, it can produce an even larger change in
delays. which means the protocol will again recompute routes. As a result, protocols
that use delay must contain mechanisms to dampen oscillation.

We described heuristics that can solve simple cases of route oscillation when paths
have identical throughput characteristics and the load is not excessive. The heuristics
can become ineffective, however, when alternative paths have different delay and
throughput characteristics.  As an example consider the delay on two paths: one over a
satellite and the other over a low capacity serial line (e.g.. a 9600 baud serial line). In
the first stage of the protocol when both paths are idle, the serial line will appear to
have significantly lower delay than the satellite, and will be chosen for traffic. Because
the serial line has low capacity, it will quickly become overloaded, and the delay will
rise sharply. In the second stage. the delay on the serial line will be much greater than
that of the satellite, so the protocol will switch traffic away from the overloaded path.
Because the satellite path has large capacity, traffic which overloaded the serial line
does not impose a significant load on the satellite, meaning that the delay on the satel-
lite path does not change with traffic. In the next round, the delay on the unloaded seri-
al line will once again appear to be much smaller than the delay on the satellite path.
The protocol will reverse the routing, and the cycle will continue. Such oscillations do,
in fact, occur in practice. As the example shows, they are difficult to manage because’
traffic which has little effect on one network can overload another.
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16.6 Combining RIP, Hello, And BGP

We have already observed that a single router may use both an Interior Gateway
Protocol to gather routing information within its autonomous system and an Exterior
Gateway Protocol to advertise routes to other autonomous systems. In principle, it
should be easy to construct a single piece of software that combines the two protocols,
making it possible to gather routes and advertise them without human intervention. In
practice, technical and political obstacles make doing so complex.

Technically, IGP protocols, like RIP and Hello, are routing protocols. A router
uses such protocols to update its routing table based on information it acquires from
other routers inside its autonomous system. Thus, routed, the UNIX program that im-
plements RIP, advertises information from the local routing table and changes the local
routing table when it receives updates. RIP trusts routers within the same autonomous
system to pass correct data.

In contrast, exterior protocols such as BGP do not trust routers in other auto-
nomous systems. Consequently, exterior protocols do not advertise all possible routes
from the local routing table. Instead, such protocols keep a database of network reacha-
bility. and apply policy constraints when sending or receiving information. [gnoring
such policy constraints can affect routing in a larger sense — some parts of the internet
can be become unreachable. For example, if a router in an autonomous system that- is
running RIP happens to propagate a low-cost route to a network at Purdue University
when it has no such route, other routers running RIP will accept and install the route.
They will then pass Purdue traffic to the router that made the error. As a result, it may
be impossible for hosts in that autonomous system to reach Purdue. The problem be-
comes more serious if Exterior Gateway Protocols do not implement policy constraints.
For example, if a border router in the autonomous system uses BGP to propagate the
illegal route to other autonomous systems, the network at Purdue may become unreach-
able from some parts of the internet.

16.7 Inter-Autonomous System Routing

We have seen that EGPs such as BGP allow one autonomous system to advertise
reachability information to another. However, it would be useful to also provide inter-
autonomous svstem routing in which routers choose least-cost paths. Doing so requires
additional trust. Extending the notions of trust from a single autonomous system to
multiple autonomous systems is complex. The simplest approach groups autonomous
systems hierarchically. Imagine, for example, three autonomous systems in three
separate academic departments on a large university campus. It is natural to group
these three together because they share administrative ties. The motivation for hierarch-
ical grouping comes primarily from the notion of trust. Routers within a group trust
one another with a higher level of confidence than routers in separate groups.

Grouping autonomous systems requires extensions to routing protocols. When re-
porting distances, the values must be increased when passing across the boundary from
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one group to another. The technique, loosely called metric transformation, partitions
distance values into three categories. For example. suppose routers within an auto-
nomous system use distance values less than 128. We can make a rule that when pass-
ing distance information across an autonomous system boundary within a single group.
the distances must be transformed into the range of 128 to 191. Finally, we can make a
rule that when passing distance values across the boundary between two groups, the
values must be transformed into the range of 192 to 254%. The eftect of such transfor-
mations is obvious: for any given destination network, any path that lies entirely within
the autonomous system is guaranteed to have lower cost than a path that strays outside
the autonomous system. Furthermore, among all paths that stray outside the auto-
nomous system, those that remain within the group have lower cost than those that
cross group boundaries. The key advantage of metric transformations is that they allow
each autonomous system to choose an IGP. yet make it possible for other systems to
compare routing costs.

16.8 Gated: Inter-Autonomous System Communication

A mechanism has been created to provide an interface between autonomous sys-
tems. Known as gatedi, the mechanism understands multiple protocols (both IGPs and
BGP), and epsures that policy constraints are honored. For example, gared can accept
RIP messages and modify the local computer’s routing table just like the routed pro-
gram. It can also advertise routes from within its autonomous system using BGP. The
rules gated follows allow a system administrator to specify exactly which networks gar-
ed may and may not advertise and how to report distances to those networks. Thus,
although gated is not an IGP, it plays an important role in routing because it demon-
strates that it is feasible to build an automated mechanism linking an IGP with BGP
without sacrificing protection.

Gated performs another useful task by implementing metric transformations. Thus,
it 1s possible and convenient to use gated between two autonomous systems as well as
on the boundary between two groups of routers that each participate in an IGP.

16.9 The Open SPF Protocol (OSPF)

In Chapter 14, we said that a link state routing algorithm, which uses SPF to com-
pute shortest paths, scales better than a distance-vector algorithm. To encourage the
adoption of link state technology, a working group of the Internet Engineering Task
Force has designed an interior gateway protocol that uses the link state algorithm.
Called Open SPF (OSPF), the new protocol tackles several ambitious goals.

¢ As the name implies. the specification is available in the published literature.
Making it an open standard that anyone can implement without paying license fees has
encouraged many vendors to support OSPF. Consequently. it has become a popular re-
placement for proprietary protocols.

“The term autonomous confederation has been used to describe a group of autonomous systems: boun-
daries of autonomous confederations correspond to transformations bevond 191,
iThe name gated is pronounced “"gate d°° from *gate daemon.™
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e OSPF includes rype of service routing. Managers can install multiple routes to a
given destination. one for each priority or type of service. When routing a datagram. a
router running OSPF uses both the destination address and type of service field in an IP
header 1o choose a route. OSPF is among the first TCP/IP protocols to offer type of
service routing.

¢ OSPF provides load balancing. 1f a manager specifies multiple routes to a given
destination at the same cost, OSPF distributes traffic over all routes equally. Again.
OSPF is among the first open 1GPs to offer load balancing: protocols like RIP compute
a single route to cach destination.

e To permit growth and make the networks at a site easier to manage. OSPF alicws
a site o partition its networks and routers into subsets called areas. Each area is gelf-
contained: knowledge of an area’s topology remains hidden from other arcas. Thus.
multiple groups within a given site can cooperate in the use of OSPF for routing even
though each group retains the ability to change its internal network topology indepen-
dently.

e The OSPF protocol specifies that all exchanges between routers can be authenti-
cated. OSPE allows a variety of authentication schemes. and even allows one area to
choose a different scheme than another area. The idea behind authentication is to
guarantee that only trusted routers propagate routing information. To understand why
this could be a problem. consider what can happen when using RIP1. which has no au-
thentication. If a malicious person uses a personal computer to propagate RIP messages
advertising low-cost routes, other routers and hosts running RIP will change their routes
and start sending datagrams to the personal computer.

e OSPF includes support for host-specific. subnet-specific, and classless routes as
well as classful network-specific routes. All types may be needed in a large internet.

e To accommodate multi-access networks like Ethernet. OSPF extends the SPF al-
gorithm described in Chapter [4. We described the algorithm using a point-to-point
graph and said that each router running SPF would periodically broadcast link status
messages about cach reachable neighbor. If K routers attach to an Ethernet. they will
broadcast K* reachability messages. OSPF minimizes broadcasts by allowing a more
complex graph topology in which each node represents either a router or a network.
Consequently. OSPF allows every multi-access network to have a designated gateway
(i.e.. a designated router) that sends link status messages on behaif of all routers at-
tached to the network: the messages report the status of all links from the network to
routers attached to the network. OSPF also uses hardware broadcast capabilities, where
they exist, to deliver link status messages.

e To permit maximum flexibility, OSPF allows managers to describe a virtual net-
work topology that abstracts away from the details of physical connections. For exam-
ple. a manager can configure a virtual link between two routers in the routing graph
even if the physical connection between the two routers requires communication across
a transit network.

e OSPF allows routers to exchange routing information learned from other (exter-
nal) sites. Basically. one or more routers with connections to other sites learn informa-
tion about those sites and include it when sending update messages. The message for-
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mat distinguishes between information acquired from external sources and information
acquired from routers interior to the site. so there is no ambiguity about the source or
reliability of routes.

16.9.1 OSPF Message Format

Each OSPF message begins with a fixed, 24-octet header as Figure 16.7 shows:

0 8 16 24 31
VERSION (1) | TYPE | MESSAGE LENGTH
SOURCE ROUTER IP ADDRESS
AREA ID
CHECKSUM | AUTHENTICATION TYPE
AUTHENTICATION (octets 0-3)
AUTHENTICATION (octets 4-7)

Figure 16.7 The fixed 24-octet OSPF message header.

Field VERSION specifies the version of the protocol. Field TYPE identifies the
message type as one of:

Type Meaning

Hello (used to test reachability)
Database description (topology)
Link status request

Link status update

Link status acknowledgement

G HWN =

The field labeled SOURCE ROUTER IP ADDRESS gives the address of the sender, and
the field labeled AREA ID gives the 32-bit identification number for the area.

Because each message can include authentication, field AUTHENTICATION TYPE
specifies which authentication scheme is used (currently, O means no authentication and
! means a simple password is used).

16.9.2 OSPF Hello Message Format

OSPF sends hello messages on each link periodically to establish and test neighbor
reachability. Figure 16.8 shows the format.
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0 8 16 24 31

OSPF HEADER WITH TYPE =1

NETWORK MASK
DEAD TIMER HELLO INTER GWAY PRIO
DESIGNATED ROUTER

BACKUP DESIGNATED ROUTER
NEIGHBOR, IP ADDRESS
NEIGHBOR, IP ADDRESS

NEIGHBOR, IP ADDRESS

Figure 16.8 OSPF hello message format. A pair of neighbor routers ex-
changes these messages periodically to test reachability.

Field NETWORK MASK contains a mask for the network over which the message
has been sent (see Chapter 10 for details about masks). Field DEAD TIMER gives a
time in seconds after which a nonresponding neighbor is considered dead. Field HEL-
LO INTER is the normal period, in seconds, between hello messages. Field GWAY
PRIO is the integer priority of this router, and is used in selecting a backup designated
router. The fields labeled DESIGNATED ROUTER and BACKUP DESIGNATED
ROUTER contain IP addresses that give the sender’s view of the designated router and
backup designated router for the network over which the message is sent. Finally,
fields labeled NEIGHBOR, IP ADDRESS give the IP addresses of all neighbors from
which the sender has recently received hello messages.

16.9.3 OSPF Database Description Message Format

Routers exchange OSPF database description messages to initialize their network
topology database. In the exchange, one router serves as a master, while the other is a
slave. The slave acknowledges each database description message with a response.
Figure 16.9 shows the format.

Because it can be large, the topology database may be divided into several mes-
sages using the / and M bits. Bit / is set to / in the initial message; bit M is set to [ if
additional messages follow. Bit § indicates whether a message was sent by a master (V)]
or by a slave (0). Field DATABASE SEQUENCE NUMBER numbers messages sequen-
tially so the receiver can tell if one is missing. The initial message contains a random
integer R: subsequent messages contain sequential integers starting at R.
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0 8 16 24 29 31

OSPF HEADER WITH TYPE =2

MUST BE ZERO [1]m]s
DATABASE SEQUENCE NUMBER
LINK TYPE
LINK ID
ADVERTISING ROUTER
LINK SEQUENCE NUMBER
LINK CHECKSUM LINK AGE

Figure 16.9 OSPF database description message format. The fields starting
at LINK TYPE are repeated for each link being specified.

The fields from LINK TYPE through LINK AGE describe one link in the network
topology; they are repeated for each link. The LINK TYPE describes a link according to
the following table.

Link Type Meaning
1 Router link
2 Network link
3 Summary link (IP network)
4 Summary link (link to border router)
5 External link (link to another site)

Field LINK ID gives an identification for the link (which can be the IP address of a
router or a network, depending on the link type).

Field ADVERTISING ROUTER specifies the address of the router advertising this
link. and LINK SEQUENCE NUMBER contains an integer generated by that router to
ensure that messages are not missed or received out of order. Field LINK CHECKSUM
provides further assurance that the link information has not been corrupted. Finally.
field LINK AGE also helps order messages — it gives the time in seconds since the link
was established.
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16.9.4 OSPF Link Status Request Message Format

After exchanging database description messages with a neighbor, a router may dis-
cover that parts of its database are out of date. To request that the neighbor supply up-
dated information. the router sends a link status request message. The message lists
specific links as shown in Figure 16.10. The neighbor responds with the most current
information it has about those links. The three fields shown are repeated for each link
about which status is requested. More than one request message may be needed if the
list of requests is long.

0 16 31

OSPF HEADER WITH TYPE =3

LINK TYPE
LINK ID
ADVERTISING ROUTER

Figure 16.10 OSPF link status request message format. A router sends this
message to a neighbor to request current information about a
specific set of links.

16.9.5 OSPF Link Status Update Message Format

Routers broadcast the status of links with a link status update message. Each up-
date consists of a list of advertisements, as Figure 16.11 shows.
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0 16 31

OSPF HEADER WITH TYPE =4

NUMBER OF LINK STATUS ADVERTISEMENTS

LINK STATUS ADVERTISEMENT,

LINK STATUS ADVERTISEMENT

Figure 16.11 OSPF link status update message format. A router sends such a
message 1o broadcast information about its directly connected
links to all other routers.

Each link status advertisement has a header format as shown in Figure 16.12. The
values used in each field are the same as in the database description message.

0 16 31
LINK AGE | LINK TYPE
LINK ID
ADVERTISING ROUTER
LINK SEQUENCE NUMBER
LINK CHECKSUM LENGTH

Figure 16.12 The format of the header used for all link status advertisements.

Following the link status header comes one of four possible formats to describe the
links from a router to a given area, the links from a router to a specific network, the
links from a router to the physical networks that comprise a single. subnetted IP net-
work (see Chapter 10), or the links from a router to networks at other sites. In all cases,
the LINK TYPE field in the link status header specifies which of the formats has been
used. Thus, a router that receives a link status update message knows exactly which of
the described destinations lie inside the site and which are external.
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16.10 Routing With Partial Information

We began our discussion of internet router architecture and routing by discussing
the concept of partial information. Hosts can route with only partial information be-
cause they rely on routers. It should be clear now that not all routers have complete in-
formation. Most autonomous systems have a single router that connects the auto-
nomous system to other autonomous systems. For example. if the site connects to the
global Internet. at least one router must have a connection that leads from the site to an
ISP. Routers within the autonomous system know about destinations within that auto-
nomous system, but they use a default route to send all other tratfic to the ISP.

How to do routing with partial information becomes obvious if we examine a
router’s routing tables. Routers at the center of the Internet have a complete set of
routes to all possible destinations that they learn from the routing arbiter system; such
routers do not use default routing. In fact, if a destination network address does not ap-
pear in the routing arbiter database, only two possibilities exist: either the address is not
a valid destination IP address, or the address is valid but currently unreachable (e.g.. be-
cause routers or networks leading to that address have failed). Routers beyond those in
ISPs at the center of the Internet do not usually-have a complete set of routes; they rely
on a default route to handle network addresses they do not understand.

Using default routes for most routers has two consequences. First, it means that
local routing errors can go undetected. For example, if a machine in an autonomous
system incorrectly routes a packet to an external autonomous system instead of to a lo-
cal router, the external system will route it back (perhaps to a different entry point).
Thus, connectivity may appear to be preserved even if routing is incorrect. The prob-
lem may not seem severe for small autonomous systems that have high speed local area
networks, but in a wide area network, incorrect routes can be disastrous. Second, on the
positive side, using default routes whenever possible means that the routing update mes-
sages exchanged by most routers will be much smaller than they would be if complete
information had to be included.

16.11 Summary

Managers must choose how to pass routing information among the local routers
within an autonomous system. Manual maintenance of routing information suffices
only for small, slowly changing internets that have minimal interconnection: most re-
quire automated procedures that discover and update routes automatically. Two routers
under the control of a single manager run an Interior Gateway Protocol, IGP, to ex-
change routing information.

An IGP implements either the distance-vector algorithm or the link state algorithm,
which is known by the name Shortest Path First (SPF). We examined three specific
IGPs: RIP, HELLO, and OSPF. RIP, a distance-vector protocol implemented by the
UNIX program routed, is among the most popular. It uses split horizon, hold-down,
and poison reverse techniques to help eliminate routing loops and the problem of count-



316 Routing: In An Autonomous System (RIP, OSPF. HELLO) Chap. 16

ing to infinity. Although it is obsolete, Hello is interesting because it illustrates a
distance-vector protocol that uses delay instead of hop counts as a distance metric. We
discussed the disadvantages of delay as a routing metric, and pointed out that although
heuristics can prevent instabilities from arising when paths have equal throughput
characteristics. long-term instabilities arise when paths have different characteristics.
Finally, OSPF is a protocol that implements the link status algorithm.

Also. we saw that the gared program provides an interface between an Interior
Gateway Protocol like RIP and the Exterior Gateway Protocol. BGP. automating the
process of gathering routes from within an autonomous system and advertising them to
another autonomous system.

FOR FURTHER STUDY

Hedrick [RFC 1058] discusses algorithms for exchanging routing information in
general and contains the standard specification for RIP1. Malkin [RFC 2453] gives the
standard for RIP2. The HELLO protocol is documented in Mills [RFC 891]. Mills and
Braun [1987] considers the problems of converting between delay and hop-count
metrics. Moy [RFC 1583] contains the lengthy specification ot OSPF as well as a dis-
cussion of the motivation behind it. Fedor [June 1988] describes guted.

EXERCISES

16.1 What network families does RIP support? Hint: read the networking section of the 4.3
BSD UNIX Programmer’s Manual.

16.2 Consider a large autonomous system using an interior router protocol like HELLO that
bases routes on delay. What difficulty does this autonomous system have if a subgroup
decides to use RIP on its routers?

16.3 Within a RIP message. each IP address is aligned on a 32-bit boundary. Will such ad-
dresses be aligned on a 32-bit boundary if the IP datagram carrying the message starts on
a 32-bit boundary?

16.4 An autonomous system can be as small as a single local area network or as large as mul-
tiple long haul networks. Why does the variation in size make it difficult to find a stan-
dard IGP?

16.5 Characterize the circumstances under which the split horizon technique will prevent slow
convergence.

16.6 Consider an internet composed of many local area networks running RIP as an IGP.
Find an examplc that shows how a routing loop can result even if the code uses “*hold
down'" after receiving information that a network is unreachable.

16.7 Should a host ever run RIP in active mode? Why or why not?
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16.8

16.9

16.10

16.11

16.12

16.13

16.14

16.15

16.16

16.17

16.18

16.19

16.20

Under what circumstances will a hop count metric produce better routes than a metric
that uses delay?

Can you imagine a situation in which an autonomous system chooses not to advertise all
its networks? Hint: think of a university.

In broad terms, we could say that RIP distributes the local routing table, while BGP dis-
tributes a table of networks and routers used to reach them (i.e., a router can send a BGP
advertisement that does not exactly match items in its own routing table). What are the
advantages of each approach?

Consider a function used to convert between delay and hop-count metrics. Can you find
properties of such functions that are sufficient to prevent routing loops. Are your pro-
perties necessary as well? (Hint: look at Mills and Braun {1987].)

Are there circumstances under which an SPF protocol can form routing loops? Hint:
think of best-effort delivery.

Build an application program that sends a request to a router running RIP and displays
the routes returned.

Read the RIP specitication carefully. Can routes reported in a response to a query differ
from the routes reported by a routing update message? If so how?

Read the OSPF specification carefully. How can a manager use the virtual link facility?

OSPF allows managers to assign many of their own identifiers, possibly leading to du-
plication of values at multiple sites. Which identifier(s) may need to change if two sites
running OSPF decide to merge?

Compare the version of OSPF available under 4BSD UNIX to the version of RIP for the
same system. What are the differences in source code size? Object code size? Data
storage size? What can you conclude?

Can you use ICMP redirect messages to pass routing information among interior
routers? Why or why not?

Write a program that takes as input a description of your organization's internet, uses
RIP queries to obtain routes from the routers, and reports any inconsistencies.

If your organization runs gated, obtain a copy of the configuration files and explain the
meaning of each item.
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Internet Multicasting

17.1 Introduction

Earlier chapters define the original IP classful addressing scheme and extensions
such as subnetting and classless addressing. This chapter explores an additional feature
of the IP addressing scheme that permits efficient multipoint delivery of datagrams. We
begin with a brief review of the underlying hardware support. Later sections describe
IP addressing for multipoint delivery and protocols that routers use to propagate the
necessary routing information.

17.2 Hardware Broadcast

Many hardware technologies contain mechanisms to send packets to multiple desti-
nations simultaneously (or nearly simultaneously). Chapter 2 reviews several technolo-
gies and discusses the most common form of multipoint delivery: broadcasting. Broad-
cast delivery means that the network delivers one copy of a packet to cach destination.
On bus technologies like Ethernet, broadcast delivery can be accomplished with a single
packet transmission. On networks composed of switches with point-to-point connec-
tions, software must implement broadcasting by forwarding copies of the packet across
individual connections until all switches have received a copy.

With most hardware technologies, a computer specifies broadcast delivery by send-
ing a packet to a special, reserved destination address called the broadcast address. For
example, Ethernet hardware addresses consist of 48-bit identifiers, with the all Is ad-
dress used to denote broadcast. Hardware on each machine recognizes the machine’s
hardware address as well as the broadcast address, and accepts incoming packets that
have either address as their destination.

319
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The chief disadvantage of broadcasting arises from its demand on resources — in
addition to using network bandwidth, each broadcast consumes computational resources
on all machines. For example, it would be possible to design an alternative internet
protocol suite that used broadcast to deliver datagrams on a local network and relied on
IP software to discard datagrams not intended for the local machine. However, such a
scheme would be extremely inefficient because all computers on the network would re-
ceive and process every datagram, even though a machine would discard most of the
datagrams that arrived. Thus. the designers of TCP/IP used unicast routing and address
binding mechanisms like ARP to eliminate broadcast delivery.

17.3 Hardware Origins Of Multicast

Some hardware technologies support a second, less common form of multi-point
delivery called multicasting. Unlike broadcasting, multicasting allows each system to
choose whether it wants to participate in a given multicast. Typically, a hardware tech-
nology reserves a large set of addresses for use with multicast. When a group of
machines want to communicate, they choose one particular multicast address 10 use for
communication. After configuring their network interface hardware to recognize the
selected multicast address, all machines in the group will receive a copy of any packet
sent to that multicast address.

At a conceptual level, multicast addressing can be viewed as a generalization of all
other address forms. For example, we can think of a conventional unicast address as a
form of multicast addressing in which there is exactly one computer in the multicast
group. Similarly. we can think of directed broadcast addressing as a form of multicast-
ing in which all computers on a particular network are members of the multicast group.
Other multicast addresses can correspond to arbitrary sets of machines.

Despite its apparent generality, multicasting cannot replace conventional forms be-
cause there is a fundamental difference in the underlying mechanisms that implement
forwarding and delivery. Unicast and broadcast addresses identify a computer or a set
of computers attached to one physical segment, so forwarding depends on the network
topology. A multicast address identifies an arbitrary set of listeners, so the forwarding
mechanism must propagate the packet to all segments. For example, consider two LAN
segments connected by an adaptive bridge that has learned host addresses. If a host on
segment / sends a unicast frame to another host on segment /, the bridge will not for-
ward the frame to segment 2. If a host uses a multicast address, however, the bridge
will forward the frame. Thus, we can conclude:

Although it may help us 1o think of multicast addressing as a generali-
zation that subsumes unicast and broadcast addresses, the underlying
forwarding and delivery mechanisms can make multicast less efficient.
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17.4 Ethernet Multicast

Ethernet provides a good example of hardware multicasting. One-half of the Eth-
ernet addresses are reserved for multicast — the low-order bit of the high-order octet
distinguishes conventional unicast addresses (0) from multicast addresses (/). In dotted
hexadecimal notation?. the multicast bit is given by:

01.00.00.00.00.00

When an Ethernet interface board is initialized, it begins accepting packets destined
for cither the computer’s hardware address or the Ethernet broadcast address. However,
device driver software can reconfigure the device to allow it to also recognize one or
more multicast addresses. For example, suppose the driver configures the Ethernet mul-
ticast address:

01.5E.00.00.00.01

After the configuration, an interface will accept any packet sent to the computer’s uni-
cast address, the broadcast address, or that one multicast address (the hardware will con-
tinue to ignore packets sent to other multicast addresses). The next sections explain
both how IP uses basic multicast hardware and the special meaning of the multicast ad-
dress

17.5 IP Multicast

IP multicasting is the internet abstraction of hardware multicasting. [t follows the
paradigm of allowing transmission to a subset of host computers, but generalizes the
concept to allow the subset to spread across arbitrary physical networks throughout the
internet. In [P terminology. a given subset is known as a multicast group. IP multicast-
ing has the following general characteristics:

o Group address. Each multicast group is a unique class D address. A few IP
multicast addresses are permanently assigned by the Internet authority, and
correspond to groups that always exist even if they have no current members.
Other addresses are temporary. and are available for private use.

e Number of groups. 1P provides addresses for up to 2% simultaneous multicast
groups. Thus, the number of groups is limited by practical constraints on rout-
ing table size rather than addressing.

e Dyvnamic group membership. A host can join or leave an [P multicast group at
any time. Furthermore. a host may be a member of an arbitrary number of
multicast groups.

“Dotted hexadecimal notation represents each octet as two hexadecimal digits with octets separated by
periods: the subscript /6 can be omitted only when the context is unambiguous.
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e Use of hardware. 1f the underlying network hardware supports multicast, IP
uses hardware multicast to send IP mulucast. If the hardware does not support
multicast, [P uses broadcast or unicast to deliver IP multicast.

o Inter-network forwarding. Because members of un IP multicast group can at-
tach to multiple physical networks, special multicast routers are required to for-
ward IP multicast; the capabulity is usually added to conventional routers.

o Delivery semantics. P multicast uses the same best-effort delivery semantics
as other [P datagram delivery, meaning that multicast datagrams can be lost, de-
layed, duplicated, or delivered out of order.

® Membership and transmission. An arbitrary host may send datagrams to any
multicast group: group membership is only used to determine whether the host
receives datagrams sent to the group.

17.6 The Conceptual Pieces

Three conceptual pieces are required for a general purpose internet multicasting
system:

1. A multicast addressing scheme
2. An effective notification and delivery mechanism

3. An efficient internetwork forwarding facility

Many goals, details, and constraints present challenges for an overall design. For
example, in addition to providing sufficient addresses for many groups, the multicast
addressing scheme must accommodate two conflicting goals: allow local autonomy in
assigning addresses, while defining addresses that have meaning globally. Similarly,
hosts need a notification mechanism to inform routers about multicast groups in which
they are participating. and routers need a delivery mechanism to transfer multicast pack-
ets to hosts. Again there are two possibilities: we desire a system that makes effective
use of hardware multicast when it is available, but also allows IP multicast delivery
over networks that do not have hardware support for multicast. Finally a multicast for-
warding facility presents the biggest design challenge of the three: our goal is a scheme
that is both efficient and dynamic — it should route multicast packets along the shortest
paths, should not send a copy of a datagram along a path if the path does not lead to a
member of the group. and should allow hosts to join and leave groups at any time.

IP multicasting includes all three aspects. It defines IP multicast addressing, speci-
fies how hosts send and receive multicast datagrams, and describes the protocol routers
use to determine multicast group membership on a network. The remainder of the
chapter considers each aspect in more detail, beginning with addressing.
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17.7 IP Multicast Addresses

We said that [P multicast addresses are divided into two types: those that are per-
manently assigned, and those that are available for temporary use. Permanent addresses
are called well-known: they are used for major services on the global Internet as well as
for infrastructure maintenance (e.g.. multicast routing protocols). Other multicast ad-
dresses correspond to transient multicast groups that are created when needed and dis-
carded when the count of group members reaches zero.

Like hardware multicasting, 1P multicasting uses the datagram’s destination ad-
dress to specify that a particular datagram must be delivered via multicast. 1P reserves
class D addresses for multicast; they have the form shown in Figure 17.1.

01234 31
[1 l‘ |1 lol Group ldentification J

Figure 17.1 The format of class D IP addresses used for multicasting. Bits 4
through 3/ identity a particular multicast group.

The first 4 bits contain /770 and identify the address as a multicast. The remain-
ing 28 bits specify a particular multicast group. There is no further structure in the
group bits. In particular. the group field is not partitioned into bits that identity the ori-
gin or owner of the group. nor does it contain administrative information such as wheth-
er all members of the group are on one physical network.

When expressed in dotted decimal notation, multicast addresses range from

224.0.0.0 through 239.255.255.255

However, many parts of the address space have been assigned special meaning. For ex-
ample, the lowest address, 224.0.0.0. is reserved; it cannot be assigned to any group.
Furthermore. the remaining addresses up through 224.0.0.255 are devoted to multicast
routing and group maintenance protocols; a router is prohibited from forwarding a da-
tagram sent to any address in that range. Figure 17.2 shows a few examples of per-
manently assigned addresses.
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Address Meaning
224.0.0.0 Base Address (Reserved)
224.0.0.1 All Systems on this Subnet
224.0.0.2 All Routers on this Subnet
224.0.0.3 Unassigned
224.0.0.4 DVMRP Routers
224.0.0.5 OSPFIGP All Routers
224.0.0.6 OSPFIGP Designated Routers
224.0.0.7 ST Routers
224.0.0.8 ST Hosts
224.0.0.9 RIP2 Routers
224.0.0.10 IGRP Routers
224.0.0.11 Mobile-Agents
224.0.0.12 DHCP Server / Relay Agent
224.0.0.13 All PIM Routers
224.0.0.14 RSVP-Encapsulation
224.0.0.15 Ail-CBT-Routers
224.0.0.16 Designated-Sbm
224.0.0.17 All-Sbms
224.0.0.18 VRRP
224.0.0.19

through Unassigned
224.0.0.255
224.0.1.21 DVMRP on MOSPF
224.0.1.84 Jini Announcement
224.0.1.85 Jini Request
239.192.0.0

through Scope restricted to one organization
239.251.255.255
239.252.0.0

through Scope restricted to one site
239.255.255.255

Figure 17.2 Examples of a tew permanent IP multicast address assignments.

Many other addresses have specific meanings.

Chap. 17

We will see that two of the addresses in the figure are especially important to the
multicast delivery mechanism. Address 224.0.0.1 is permanently assigned to the all
systems group, and address 224.0.0.2 is permanently assigned to the all routers group.
The all systems group includes all hosts and routers on a network that are participating
in IP multicast, whereas the all routers group includes only the routers that are partici-
pating. In general, both of these groups are used for control protocols and not for the



